AMAT 584 Homework 1

Due Friday, February 14

February 19, 2020

1 Introduction

Problem 1. Which of the following point sets are in general position?
a. $\{(0,1),(1,3),(2,5)\}$,
b. $\{(0,0),(1,0),(2,4)\}$,
c. $\{(0,0),(0,1),(1,0),(1,1)\}$,
d. $\{(0,0,0),(0,1,0),(1,0,0),(1,1,0)\}$,
e. $\{(0,0,0),(0,1,0),(1,0,0),(1,1,1)\}$.

Problem 2. Which of the following sets is a (geometric) simplex? If the set is a simplex, give its dimension, and express it as the convex hull of a set of points in general position, using the bracket notation.
a. $\left\{(x, 3 x) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right\}$,
b. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 2\right\}$,
c. $\left\{(x, 3 x, x) \in \mathbb{R}^{3} \mid 0 \leq x \leq 1\right\}$,
d. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right\}$,
e. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x, 0 \leq y \leq 1-x\right\}$.

Problem 3. Which of the following sets of simplices is a geometric simplicial complex? For each, if the answer is no, explain which property fails; and if the answer is yes, give the dimension of the complex.
a. $\{[0],[0,1]\}$,
b. $\{[0],[1],[0,1]\}$,
c. $\{[0],[1],[2],[0,2]\}$,
d. $\{[(0,0)],[(0,1)],[(1,0)],[(0,0),(0,1),(1,0)]\}$,
e. $\{[(0,0)],[(0,1)],[(1,0)],[(1,1)],[(0,0),(0,1)],[(0,0),(1,0)],[(0,1),(1,0)]\}$,
f. $\{[(0,0)],[(0,1)],[(1,0)],[(1 / 4,1 / 4)],[(0,0),(0,1)],[(0,0),(1,0)],[(0,1),(1,0)]\}$,

Problem 4. Which of the following sets is an abstract simplical complex? For each, if the answer is no, explain why; and if the answer is yes, give the dimension of the complex, and sketch its geometric realization, up to homeomorphism.
a. $\{[a],[b],[a, b, c]\}$,
b. $\{[a],[b],[c],[a, b, c]\}$,
c. $\{[a],[b],[c],[a, b]\}$,
d. $\{[a],[b],[c],[d],[a, b],[c, d]\}$,
e. $\{[a],[b],[c],[d],[a, b],[b, c],[c, d],[a, d],[a, c],[a, b, c]\}$.

Problem 5. Let

$$
X=\{[A],[B],[C],[A, B],[B, C],[A, C],[A, B, C]\} \quad Y=\{[A],[B],[C],[A, B],[B, C]\} .
$$

- Let $f: V(X) \rightarrow V(Y)$ be given by $f(x)=x$ for all x. Does f define a simplicial map $f: X \rightarrow Y$? Briefly explain your answer.

Problem 6. For X as in the previous problem and W any abstract simplicial complex, explain why any map $f: V(W) \rightarrow V(X)$ defines a simplicial map $f: W \rightarrow X$.

