AMAT 584 Homework 1 Solutions

1 Introduction

Problem 1. Which of the following point sets are in general position?

- a. $\{(0,1), (1,3), (2,5)\},\$
- b. $\{(0,0), (1,0), (2,4)\},\$
- c. $\{(0,0), (0,1), (1,0), (1,1)\},\$
- d. $\{(0,0,0), (0,1,0), (1,0,0), (1,1,0)\},\$
- e. $\{(0,0,0), (0,1,0), (1,0,0), (1,1,1)\}.$

Answer: b. and e.

Problem 2. Which of the following sets is a (geometric) simplex? If the set is a simplex, give its dimension, and express it as the convex hull of a set of points in general position, using the bracket notation.

- a. $\{(x, 3x) \in \mathbb{R}^2 \mid 0 \le x \le 1\}$, **Answer**: This is the 1-D geometric simplex [(0, 0), (1, 3)]
- b. $\{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le 2\}$, Answer: Not a geometric simplex
- c. $\{(x, 3x, x) \in \mathbb{R}^3 \mid 0 \le x \le 1\}$, Answer: This is the 1-D geometric simplex [(0, 0, 0), (1, 3, 1)]
- d. $\{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1\}$, Answer: Not a geometric simplex.
- e. $\{(x,y) \in \mathbb{R}^2 \mid 0 \le x, \ 0 \le y \le 1-x\}$. Answer: This is the 2-D geometric simplex [(0,0), (1,0), (0,1)].

Problem 3. Which of the following sets of simplices is a geometric simplicial complex? For each, if the answer is no, explain which property fails; and if the answer is yes, give the dimension of the complex.

- a. $\{[0], [0, 1]\}$, **Answer**: No. [1] is a face of [0, 1] but is not present.
- b. $\{[0], [1], [0, 1]\},$ **Answer**: Yes, 1-D.
- c. $\{[0], [1], [2], [0, 2]\}$, Answer: Yes, 1-D.

- d. $\{[(0,0)], [(0,1)], [(1,0)], [(0,0), (0,1), (1,0)]\}$, **Answer**: No, e.g., [[(0,0), , (0,1)] is a face of [(0,0), (0,1), (1,0)], but is not present.
- e. $\{[(0,0)], [(0,1)], [(1,0)], [(1,1)], [(0,0), (0,1)], [(0,0), (1,0)], [(0,1), (1,0)]\},$ Answer: Yes, 1-D.
- f. $\{[(0,0)], [(0,1)], [(1,0)], [(1/4,1/4)], [(0,0), (0,1)], [(0,0), (1,0)], [(0,1), (1,0)]\},$ **Answer**: Yes, 1-D.

Problem 4. Which of the following sets is an abstract simplical complex? For each, if the answer is no, explain why; and if the answer is yes, give the dimension of the complex, and sketch its geometric realization, up to homeomorphism.

- a. $\{[a], [b], [a, b, c]\}$, **Answer**: No, e.g., $[c] \subset [a, b, c]$ is not present.
- b. $\{[a], [b], [c], [a, b, c]\}$, **Answer**: No, e.g., $[a, b] \subset [a, b, c]$ is not present.
- c. $\{[a], [b], [c], [a, b]\}$, Answer: Yes, 1-D.
- d. $\{[a], [b], [c], [d], [a, b], [c, d]\}$, Answer: Yes, 1-D
- e. $\{[a], [b], [c], [d], [a, b], [b, c], [c, d], [a, d], [a, c], [a, b, c]\}$. Answer: Yes, 2-D.

Problem 5. Let

 $X = \{[A], [B], [C], [A, B], [B, C], [A, C], [A, B, C]\} \quad Y = \{[A], [B], [C], [A, B], [B, C]\}.$

Let $f: V(X) \to V(Y)$ be given by f(x) = x for all x. Does f define a simplicial map $f: X \to Y$? Briefly explain your answer.

Answer: No, because $f({A, B, C}) = {A, B, C}$ is not a simplex in Y.

Problem 6. For X as in the previous problem and W any abstract simplicial complex, explain why any map $f: V(W) \to V(X)$ defines a simplicial map $f: W \to X$.

Answer: For any simplex $\sigma \in W$, $f(\sigma)$ is a simplex in X, because X contains every non-empty subset of its vertex set.

