AMAT 584 Homework 1 Solutions

1 Introduction

Problem 1. Which of the following point sets are in general position?
a. $\{(0,1),(1,3),(2,5)\}$,
b. $\{(0,0),(1,0),(2,4)\}$,
c. $\{(0,0),(0,1),(1,0),(1,1)\}$,
d. $\{(0,0,0),(0,1,0),(1,0,0),(1,1,0)\}$,
e. $\{(0,0,0),(0,1,0),(1,0,0),(1,1,1)\}$.

Answer: b. and e.
Problem 2. Which of the following sets is a (geometric) simplex? If the set is a simplex, give its dimension, and express it as the convex hull of a set of points in general position, using the bracket notation.
a. $\left\{(x, 3 x) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right\}$, Answer: This is the 1-D geometric simplex $[(0,0),(1,3)]$
b. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 2\right\}$, Answer: Not a geometric simplex
c. $\left\{(x, 3 x, x) \in \mathbb{R}^{3} \mid 0 \leq x \leq 1\right\}$, Answer: This is the 1-D geometric simplex $[(0,0,0),(1,3,1)]$
d. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right\}$, Answer: Not a geometric simplex.
e. $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x, 0 \leq y \leq 1-x\right\}$. Answer: This is the 2-D geometric simplex $[(0,0),(1,0),(0,1)]$.

Problem 3. Which of the following sets of simplices is a geometric simplicial complex? For each, if the answer is no, explain which property fails; and if the answer is yes, give the dimension of the complex.
a. $\{[0],[0,1]\}$, Answer: No. [1] is a face of $[0,1]$ but is not present.
b. $\{[0],[1],[0,1]\}$, Answer: Yes, 1-D.
c. $\{[0],[1],[2],[0,2]\}, \quad$ Answer: Yes, 1-D.
d. $\{[(0,0)],[(0,1)],[(1,0)],[(0,0),(0,1),(1,0)]\}$, Answer: No, e.g., $[[(0,0),,(0,1)]$ is a face of $[(0,0),(0,1),(1,0)]$, but is not present.
e. $\{[(0,0)],[(0,1)],[(1,0)],[(1,1)],[(0,0),(0,1)],[(0,0),(1,0)],[(0,1),(1,0)]\}$, Answer: Yes, 1-D.
f. $\{[(0,0)],[(0,1)],[(1,0)],[(1 / 4,1 / 4)],[(0,0),(0,1)],[(0,0),(1,0)],[(0,1),(1,0)]\}$, Answer: Yes, 1-D.

Problem 4. Which of the following sets is an abstract simplical complex? For each, if the answer is no, explain why; and if the answer is yes, give the dimension of the complex, and sketch its geometric realization, up to homeomorphism.
a. $\{[a],[b],[a, b, c]\}, \quad$ Answer: No, e.g., $[c] \subset[a, b, c]$ is not present.
b. $\{[a],[b],[c],[a, b, c]\}$, Answer: No, e.g., $[a, b] \subset[a, b, c]$ is not present.
c. $\{[a],[b],[c],[a, b]\}$, Answer: Yes, 1-D.
d. $\{[a],[b],[c],[d],[a, b],[c, d]\}, \quad$ Answer: Yes, 1-D
e. $\{[a],[b],[c],[d],[a, b],[b, c],[c, d],[a, d],[a, c],[a, b, c]\}$. Answer: Yes, 2-D.

Problem 5. Let
$X=\{[A],[B],[C],[A, B],[B, C],[A, C],[A, B, C]\} \quad Y=\{[A],[B],[C],[A, B],[B, C]\}$.
Let $f: V(X) \rightarrow V(Y)$ be given by $f(x)=x$ for all x. Does f define a simplicial map $f: X \rightarrow Y$? Briefly explain your answer.
Answer: No, because $f(\{A, B, C\})=\{A, B, C\}$ is not a simplex in Y.
Problem 6. For X as in the previous problem and W any abstract simplicial complex, explain why any map $f: V(W) \rightarrow V(X)$ defines a simplicial map $f: W \rightarrow X$.
Answer: For any simplex $\sigma \in W, f(\sigma)$ is a simplex in X, because X contains every non-empty subset of its vertex set.

