AMAT 584 Homework 2

Due Wednesday, February 26

Problem 1. 1. For each of the following abstract simplicial complexes, sketch the geometric realization (up to homoeomorphism) and compute the Euler characteristic:

- a. $\{[a], [b], [c], [a, b]\},\$
- b. $\{[a], [b], [a, b]\},\$
- c. $\{[a], [b], [c], [d], [a, b], [c, d]\},\$
- d. $\{[a], [b], [c], [d], [a, b], [b, c], [a, c], [c, d]\},\$
- e. $\{[a], [b], [c], [a, b], [b, c], [a, c], [a, b, c]\}.$

Which pairs of these simplicial complexes have homotopy equivalent geometric realizations? Which pairs have equal Euler characteristics?

Problem 2. Let $X = \{(0,0), (2,0), (0,1)\}.$

a. Give an explicit expression for $\operatorname{\check{C}ech}(X, r)$ for each $r \ge 0$. (Here and forever after, use the closed-ball definition of $\operatorname{\check{C}ech}(X, r)$.) HINT: To compute the value of r at which the 2-simplex [(0,0),(2,0),(0,1)] first appears in $\operatorname{\check{C}ech}(V,r)$, it will be helpful to note that x = (1,.5) is the midpoint of the line segment from (0,1) to (2,0), and

$$d(x,(0,0)) = d(x,(2,0)) = d(x,(0,1)) = \frac{\sqrt{5}}{2}.$$

- b. Give an explicit expression for $\operatorname{Rips}(X, r)$ for each $r \ge 0$.
- c. The set $Vor(X) = {Vor(x) | x \in X}$ is called the *Voronoi decomposition* of X. Sketch Vor(X). In other words, sketch each of the Voronoi cells of X in a single diagram.
- d. Give an explicit expression for Del(X, r) for each $r \ge 0$.

Problem 3. Let $X = \{(0,0), (2,0), (0,2), (2,2)\}$. Give an explicit expression for Rips(X, r) for each $r \ge 0$.

Problem 4. Prove that for any finite $X \subset \mathbb{R}^n$, $\operatorname{Rips}(X, r) \subset \operatorname{\check{C}ech}(X, 2r)$. HINT: Use the triangle inequality.

Problem 5. Give an example of a finite set $X \subset \mathbb{R}^2$ and $0 \leq r < s$ such that $\operatorname{Rips}(X, r)$ is a connected graph and $\operatorname{Rips}(X, s)$ is a 4-dimensional simplicial complex.