AMAT 584 Homework 2 Solutions

Problem 1. 1. For each of the following abstract simplicial complexes, sketch the geometric realization (up to homoeomorphism) and compute the Euler characteristic:
a. $\{[a],[b],[c],[a, b]\}, \quad$ Answer: E.C. $=2$
b. $\{[a],[b],[a, b]\}, \quad$ Answer: E.C. $=1$
c. $\{[a],[b],[c],[d],[a, b],[c, d]\}, \quad$ Answer: E.C. $=2$
d. $\{[a],[b],[c],[d],[a, b],[b, c],[a, c],[c, d]\}, \quad$ Answer: E.C. $=0$.
e. $\{[a],[b],[c],[a, b],[b, c],[a, c],[a, b, c]\}, \quad$ Answer: E.C. $=1$.

Which pairs of these simplicial complexes have homotopy equivalent geometric realizations? Which pairs have equal Euler characteristics?
Answer: a. and c. are homotopy equivalent, as both deformation retract onto a pair of points, and both have Euler characteristic 2. Also b. and e. are homotopy equivalent, as both deformation retract onto a single point, and both have Euler characteristic 1.

Problem 2. Let $X=\{(0,0),(2,0),(0,1)\}$.
a. Give an explicit expression for $\check{\operatorname{Coch}}(X, r)$ for each $r \geq 0$. (Here and forever after, use the closed-ball definition of Čech (X, r).) HINT: To compute the value of r at which the 2 -simplex $[(0,0),(2,0),(0,1)]$ first appears in Cech (V, r), it will be helpful to note that $x=(1, .5)$ is the midpoint of the line segment from $(0,1)$ to $(2,0)$, and

$$
d(x,(0,0))=d(x,(2,0))=d(x,(0,1))=\frac{\sqrt{5}}{2}
$$

b. Give an explicit expression for $\operatorname{Rips}(X, r)$ for each $r \geq 0$.
c. The set $\operatorname{Vor}(X)=\{\operatorname{Vor}(x) \mid x \in X\}$ is called the Voronoi decomposition of X. Sketch $\operatorname{Vor}(X)$. In other words, sketch each of the Voronoi cells of X in a single diagram.
d. Give an explicit expression for $\operatorname{Del}(X, r)$ for each $r \geq 0$.

Let

$$
\begin{gathered}
A=(0,0), B=(2,0), C=(0,1) \\
\operatorname{Rips}(X, r)=\check{\operatorname{Cech}}(X, r)=\operatorname{Del}(X, r)= \\
\begin{cases}\{[A],[B],[C],\} & \text { if } 0 \leq r<\frac{1}{2} \\
\{[A],[B],[C],[A, C]\} & \text { if } \frac{1}{2} \leq r<1 \\
\{[A],[B],[C],[A, B],[A, C]\} & \text { if } 1 \leq r<\frac{\sqrt{5}}{2} \\
\{[A],[B],[C],[A, B],[A, C],[B, C],[A, B, C]\} & \text { if } \frac{\sqrt{5}}{2} \leq r\end{cases}
\end{gathered}
$$

Problem 3. Let $X=\{(0,0),(2,0),(0,2),(2,2)\}$. Give an explicit expression for $\operatorname{Rips}(X, r)$ for each $r \geq 0$. Answer: Let

$$
\begin{gathered}
A=(0,0), B=(2,0), C=(0,1) \\
\operatorname{Rips}(X, r)= \begin{cases}\{[A],[B],[C],[D]\} & \text { if } 0 \leq r<1 \\
\{[A],[B],[C],[D],[A, B],[B, C],[C, D],[A, D]\} & \text { if } 1 \leq r \leq \sqrt{2} \\
\text { The 3-simplex with vertices } A, B, C, D & \text { if } \sqrt{2} \leq r\end{cases}
\end{gathered}
$$

Problem 4. Prove that for any finite $X \subset \mathbb{R}^{n}, \operatorname{Rips}(X, r) \subset \operatorname{Čech}(X, 2 r)$. HINT: Use the triangle inequality.
Answer: Suppose $\sigma=\left\{x_{0}, x_{k}\right\} \in \operatorname{Rips}(X, r)$. Then for $i \in\{0, k\},\left\|x_{0}-x_{i}\right\| \leq$ $2 r$, so

$$
x_{0} \in B\left(x_{0}, 2 r\right) \cap B\left(x_{1}, 2 r\right) \cap \cdots \cap B\left(x_{k}, 2 r\right)
$$

Thus the above intersection of balls in non-empty, which implies that $\sigma \in$ Čech $(X, 2 r)$.

Problem 5. Give an example of a finite set $X \subset \mathbb{R}^{2}$ and $0 \leq r<s$ such that $\operatorname{Rips}(X, r)$ is a connected graph and $\operatorname{Rips}(X, s)$ is a 4 -dimensional simplicial complex.

Answer: Here's one possibility among many:

$$
X=\{(0,0),(1,0),(2,0),(3,0),(4,0)\}
$$

$r=\frac{1}{2}, s=2$.

