AMAT 584 Homework 2 Solutions

Problem 1. 1. For each of the following abstract simplicial complexes, sketch the geometric realization (up to homoeomorphism) and compute the Euler characteristic:

- a. $\{[a], [b], [c], [a, b]\},$ Answer: E.C.=2
- b. $\{[a], [b], [a, b]\},$ Answer: E.C.=1
- c. $\{[a], [b], [c], [d], [a, b], [c, d]\}$, Answer: E.C.= 2
- d. $\{[a], [b], [c], [d], [a, b], [b, c], [a, c], [c, d]\},$ Answer: E.C.=0.
- e. $\{[a], [b], [c], [a, b], [b, c], [a, c], [a, b, c]\}$, Answer: E.C.=1.

Which pairs of these simplicial complexes have homotopy equivalent geometric realizations? Which pairs have equal Euler characteristics?

Answer: a. and c. are homotopy equivalent, as both deformation retract onto a pair of points, and both have Euler characteristic 2. Also b. and e. are homotopy equivalent, as both deformation retract onto a single point, and both have Euler characteristic 1.

Problem 2. Let $X = \{(0,0), (2,0), (0,1)\}.$

a. Give an explicit expression for $\operatorname{\check{Cech}}(X, r)$ for each $r \ge 0$. (Here and forever after, use the closed-ball definition of $\operatorname{\check{Cech}}(X, r)$.) HINT: To compute the value of r at which the 2-simplex [(0,0), (2,0), (0,1)] first appears in $\operatorname{\check{Cech}}(V, r)$, it will be helpful to note that x = (1, .5) is the midpoint of the line segment from (0,1) to (2,0), and

$$d(x, (0, 0)) = d(x, (2, 0)) = d(x, (0, 1)) = \frac{\sqrt{5}}{2}.$$

- b. Give an explicit expression for $\operatorname{Rips}(X, r)$ for each $r \ge 0$.
- c. The set $Vor(X) = {Vor(x) | x \in X}$ is called the *Voronoi decomposition* of X. Sketch Vor(X). In other words, sketch each of the Voronoi cells of X in a single diagram.
- d. Give an explicit expression for Del(X, r) for each $r \ge 0$.

$$A = (0,0), B = (2,0), C = (0,1).$$

 $\operatorname{Rips}(X, r) = \operatorname{\check{C}ech}(X, r) = \operatorname{Del}(X, r) =$

$$\begin{cases} \{[A], [B], [C], \} & \text{if } 0 \leq r < \frac{1}{2}, \\ \{[A], [B], [C], [A, C]\} & \text{if } \frac{1}{2} \leq r < 1, \\ \{[A], [B], [C], [A, B], [A, C]\} & \text{if } 1 \leq r < \frac{\sqrt{5}}{2}, \\ \{[A], [B], [C], [A, B], [A, C], [B, C], [A, B, C]\} & \text{if } \frac{\sqrt{5}}{2} \leq r. \end{cases}$$

Problem 3. Let $X = \{(0,0), (2,0), (0,2), (2,2)\}$. Give an explicit expression for $\operatorname{Rips}(X, r)$ for each $r \ge 0$. Answer: Let

$$A = (0,0), B = (2,0), C = (0,1).$$

$$\operatorname{Rips}(X, r) = \begin{cases} \{[A], [B], [C], [D]\} & \text{if } 0 \le r < 1, \\ \{[A], [B], [C], [D], [A, B], [B, C], [C, D], [A, D]\} & \text{if } 1 \le r \le \sqrt{2}, \\ \operatorname{The 3-simplex with vertices } A, B, C, D & \text{if } \sqrt{2} \le r. \end{cases}$$

Problem 4. Prove that for any finite $X \subset \mathbb{R}^n$, $\operatorname{Rips}(X, r) \subset \operatorname{\check{C}ech}(X, 2r)$. HINT: Use the triangle inequality.

Answer: Suppose $\sigma = \{x_0, x_k\} \in \operatorname{Rips}(X, r)$. Then for $i \in \{0, k\}, ||x_0 - x_i|| \le 2r$, so

$$x_0 \in B(x_0, 2r) \cap B(x_1, 2r) \cap \cdots \cap B(x_k, 2r).$$

Thus the above intersection of balls in non-empty, which implies that $\sigma \in \check{C}ech(X, 2r)$.

Problem 5. Give an example of a finite set $X \subset \mathbb{R}^2$ and $0 \leq r < s$ such that $\operatorname{Rips}(X, r)$ is a connected graph and $\operatorname{Rips}(X, s)$ is a 4-dimensional simplicial complex.

Answer: Here's one possibility among many:

$$X = \{(0,0), (1,0), (2,0), (3,0), (4,0)\},\$$

 $r = \frac{1}{2}, s = 2.$

Let

