AMAT 584 Homework 3

Due Friday, March 6

Problem 1. Compute the Euler characteristic curves of the Vietoris-Rips filtrations of the following sets $X \in \mathbb{R}^{2}$:
a. $X=\{(0,0),(2,0),(0,1)\}$,
b. $X=\{(0,0),(2,0),(0,2),(2,2)\}$.

HINT: In homework 2, you gave an explicit expression for the Vietoris-Rips filtration of each of these sets X. To avoid repeating that work, you can assume these as given.

Problem 2. Show that F_{4} is not a field. HINT: Find a non-zero element in F_{4} with no multiplicative inverse.

Problem 3. Let set S denote the set of all polynomials in one variable with real coefficients. For example,

$$
3+\frac{1}{2} x+7 x^{2}+4 x^{3} \in S
$$

S has a familiar definition of addition and multiplication. Moreover, S has an additive identity, the constant polynomial 0 , and a multiplicative identity, the constant polynomial 1. Is S a field? Explain your answer.

Problem 4. Describe all subspaces of the following vector spaces:
a. F_{2}^{2},
b. F_{3}^{2}.

Problem 5. Let V be a vector space over a field F. Racall that $\overrightarrow{0}$ denotes the additive identity of V, and 0 denotes the additive identity of F. Prove the following:
a. For all $a \in F, a \overrightarrow{0}=\overrightarrow{0}$.
b. For all $v \in V, 0 v=\overrightarrow{0}$.

