## AMAT 584 Homework 3 Solutions

Problem 1. Compute the Euler characteristic curves of the Vietoris-Rips filtrations of the following sets $X \in \mathbb{R}^{2}$ :
a. $X=\{(0,0),(2,0),(0,1)\}$,
b. $X=\{(0,0),(2,0),(0,2),(2,2)\}$.

HINT: In homework 2, you gave an explicit expression for the Vietoris-Rips filtration of each of these sets $X$. To avoid repeating that work, you can assume these as given.

## Answer:

a. $\chi(\operatorname{VR}(X))= \begin{cases}3 & \text { if } 0 \leq r<\frac{1}{2}, \\ 2 & \text { if } \frac{1}{2} \leq r<1, \\ 1 & \text { if } 1 \leq r .\end{cases}$
b. $\operatorname{VR}(X, r)= \begin{cases}4 & \text { if } 0 \leq r<1, \\ 0 & \text { if } 1 \leq r \leq \sqrt{2}, \\ 1 & \text { if } \sqrt{2} \leq r .\end{cases}$

Problem 2. Show that $F_{4}$ is not a field. HINT: Find a non-zero element in $F_{4}$ with no multiplicative inverse.
Answer: In $F_{4}, 2 \times 0=0,2 \times 1=2,2 \times 2=0,2 \times 3=2$. So 2 has no multiplicative inverse.

Problem 3. Let set $S$ denote the set of all polynomials in one variable with real coefficients. For example,

$$
3+\frac{1}{2} x+7 x^{2}+4 x^{3} \in S
$$

$S$ has a familiar definition of addition and multiplication. Moreover, $S$ has an additive identity, the constant polynomial 0 , and a multiplicative identity, the constant polynomial 1. Is $S$ a field? Explain your answer.
Answer: No. The product of non-zero polynomials of degrees $a$ and $b$ has degree $a+b$. Thus, a polynomial of degree at least 1 has no multiplicative inverse. For example, $x$ has no multiplicative inverse.
Problem 4. Describe all subspaces of the following vector spaces:
a. $F_{2}^{2}$, Answer: $\{\overrightarrow{0}\},\{\overrightarrow{0},(1,0)\},\{\overrightarrow{0},(0,1)\},\{\overrightarrow{0},(1,1)\}, F_{2}^{2}$.
b. $F_{3}^{2}$. Answer: $\{\overrightarrow{0}\},\{\overrightarrow{0},(1,0),(2,0)\},\{\overrightarrow{0},(0,1),(0,2)\},\{\overrightarrow{0},(1,1),(2,2)\}$, $\{\overrightarrow{0},(2,1),(1,2)\}, F_{3}^{2}$.

Problem 5. Let $V$ be a vector space over a field $F$. Racall that $\overrightarrow{0}$ denotes the additive identity of $V$, and 0 denotes the additive identity of $F$. Prove the following:
a. For all $a \in F, a \overrightarrow{0}=\overrightarrow{0}$. Answer: $a \overrightarrow{0}=a(\overrightarrow{0}+\overrightarrow{0})=a \overrightarrow{0}+a \overrightarrow{0}$. Adding $-(a \overrightarrow{0})$ to both sides gives $0=a \overrightarrow{0}$.
b. For all $\vec{v} \in V, 0 \vec{v}=\overrightarrow{0}$. Answer: This is similar to the above. $0 \vec{v}=$ $(0+0) \vec{v}=0 \vec{v}+0 \vec{v}$. Adding $-0 \vec{v}$ to both sides gives $\overrightarrow{0}=0 \vec{v}$.

Note that these proofs only use the axioms for an abstract vector space.

