AMAT 584 Homework 3 Solutions

Problem 1. Compute the Euler characteristic curves of the Vietoris-Rips filtrations of the following sets $X \in \mathbb{R}^2$:

a.
$$X = \{(0,0), (2,0), (0,1)\},\$$

b.
$$X = \{(0,0), (2,0), (0,2), (2,2)\}.$$

HINT: In homework 2, you gave an explicit expression for the Vietoris-Rips filtration of each of these sets X. To avoid repeating that work, you can assume these as given.

Answer

Answer:
a.
$$\chi(\text{VR}(X)) = \begin{cases} 3 & \text{if } 0 \le r < \frac{1}{2}, \\ 2 & \text{if } \frac{1}{2} \le r < 1, \\ 1 & \text{if } 1 \le r. \end{cases}$$

b. $\text{VR}(X, r) = \begin{cases} 4 & \text{if } 0 \le r < 1, \\ 0 & \text{if } 1 \le r \le \sqrt{2}, \\ 1 & \text{if } \sqrt{2} \le r. \end{cases}$

Problem 2. Show that F_4 is not a field. HINT: Find a non-zero element in F_4 with no multiplicative inverse.

Answer: In F_4 , $2 \times 0 = 0$, $2 \times 1 = 2$, $2 \times 2 = 0$, $2 \times 3 = 2$. So 2 has no multiplicative inverse.

Problem 3. Let set S denote the set of all polynomials in one variable with real coefficients. For example,

$$3 + \frac{1}{2}x + 7x^2 + 4x^3 \in S.$$

S has a familiar definition of addition and multiplication. Moreover, S has an additive identity, the constant polynomial 0, and a multiplicative identity, the constant polynomial 1. Is S a field? Explain your answer.

Answer: No. The product of non-zero polynomials of degrees a and b has degree a+b. Thus, a polynomial of degree at least 1 has no multiplicative inverse. For example, x has no multiplicative inverse.

Problem 4. Describe all subspaces of the following vector spaces:

a.
$$F_2^2$$
, **Answer**: $\{\vec{0}\}, \{\vec{0}, (1,0)\}, \{\vec{0}, (0,1)\}, \{\vec{0}, (1,1)\}, F_2^2$.

b. F_3^2 . **Answer**: $\{\vec{0}\}$, $\{\vec{0}, (1,0), (2,0)\}$, $\{\vec{0}, (0,1), (0,2)\}$, $\{\vec{0}, (1,1), (2,2)\}$, $\{\vec{0}, (2,1), (1,2)\}$, F_3^2 .

Problem 5. Let V be a vector space over a field F. Racall that $\vec{0}$ denotes the additive identity of V, and 0 denotes the additive identity of F. Prove the following:

- a. For all $a \in F$, $a\vec{0} = \vec{0}$. **Answer**: $a\vec{0} = a(\vec{0} + \vec{0}) = a\vec{0} + a\vec{0}$. Adding $-(a\vec{0})$ to both sides gives $0 = a\vec{0}$.
- b. For all $\vec{v} \in V$, $0\vec{v} = \vec{0}$. **Answer**: This is similar to the above. $0\vec{v} = (0+0)\vec{v} = 0\vec{v} + 0\vec{v}$. Adding $-0\vec{v}$ to both sides gives $\vec{0} = 0\vec{v}$.

Note that these proofs only use the axioms for an abstract vector space.