AMAT 584 Homework 4

Due Friday, April 10

Problem 1. Which of the following subsets of \mathbb{R}^2 is a subspace? For subsets which are not a subspace, explain your answer.

- a. $\{(x,y) \mid x = 3y, y \ge 0\},\$
- b. $\{(x,y) \mid x = 3y\},\$
- c. $\{(x,3) \mid x \in \mathbb{R}\},\$
- d. $\{(x, x^2) \mid x \in \mathbb{R}\}.$

Problem 2. For each of the following pairs of sets X and Y, compute the symmetric difference of X and Y:

a. $X = \{1, 2, 3\}, Y = \{2, 3, 4\},$ b. $X = \{1, 2, 3\}, Y = \{1, 2, 3\},$ c. $X = \{1, 2, 3\}, Y = \{4, 5, 6\}.$

Problem 3. For each of the following subsets S of F_2^4 , say whether S is linearly independent, and find a basis for Span(S).

a.
$$S = \left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}.$$

b. $S = \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \right\}.$

HINT: Form a matrix A with the elements of S as rows. (These rows can be in any order.) Do Gaussian elimination on A to form a matrix A'. Standard linear algebra (which you may appeal to here) tells us that

- 1. S is linearly independent if and only if A' contains no non-zero rows, and
- 2. the non-zero rows of A' are a basis for Span(S).

Problem 4. Let $T = \{a, b, c\}$. [BONUS] Regard the power set P(T) as a vector space over F_2 , as in class. For each of the following subsets $S \subset P(T)$, say whether S is linearly independent, and find a basis for Span(S).

- a. $S = \{\{a, b\}, \{b, c\}, \{a, b, c\}\},\$
- b. $S = \{\{a, b\}, \{b, c\}, \{a, c\}\}.$

[HINT: For V any finite dimensional vector space over a field F and B a basis for V, the function $\gamma: V \to F^{|B|}$ defined by $\gamma(v) = [v]_B$ is easily checked to be an isomorphism. If $f: V \to W$ is any isomorphism of vector spaces, f maps linearly independent sets to linearly independent sets. Now recall that we may identity T with a basis for P(T). Represent elements of P(T) as vectors in F_2^3 , with respect to this basis, and carry out the computation as in the previous problem.]

Problem 5. Consider the linear map $f: F_2^3 \to F_2^3$ given by

$$f\begin{pmatrix} x\\ y\\ z \end{pmatrix} = A\begin{pmatrix} x\\ y\\ z \end{pmatrix},$$

where

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- a. Compute a basis for ker f. [HINT: To do this, you can use the usual Gaussian Elimination + backsolve approach that you learned in your linear algebra class for solving linear systems.]
- b. Compute a basis for $\inf f$. [HINT: $\inf f$ is the span of the columns of A.]

Problem 6. Repeat the computations of the problem above, but now taking

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Problem 7. Suppose $f: F_2^2 \to F_2^3$ is a linear map such that f(1,1) = (1,1,0) and f(0,1) = (0,1,0). Represent f as a matrix with respect to the standard bases for F_2^2 and F_2^3 .

Problem 8. Suppose $g: F_2^3 \to F_2^3$ is a linear map such that

$$g(1, 1, 1) = (1, 0, 0),$$

$$g(1, 1, 0) = (0, 1, 0),$$

$$g(0, 1, 0) = (0, 0, 1).$$

Represent g as a matrix with respect to the standard basis for F_2^3 .

Problem 9. For f and g as in the previous two problems, represent $g \circ f$ and g as a matrix with the respect to the standard bases for F_2^2 and F_2^3 .

Problem 10. Prove that a linear map $f: V \to W$ is an injection if and only if $\ker f = {\vec{0}}.$