AMAT 584 Homework 4

Due Friday, April 10

Problem 1. Which of the following subsets of \mathbb{R}^{2} is a subspace? For subsets which are not a subspace, explain your answer.
a. $\{(x, y) \mid x=3 y, y \geq 0\}$,
b. $\{(x, y) \mid x=3 y\}$,
c. $\{(x, 3) \mid x \in \mathbb{R}\}$,
d. $\left\{\left(x, x^{2}\right) \mid x \in \mathbb{R}\right\}$.

Problem 2. For each of the following pairs of sets X and Y, compute the symmetric difference of X and Y :
a. $X=\{1,2,3\}, Y=\{2,3,4\}$,
b. $X=\{1,2,3\}, Y=\{1,2,3\}$,
c. $X=\{1,2,3\}, Y=\{4,5,6\}$.

Problem 3. For each of the following subsets S of F_{2}^{4}, say whether S is linearly independent, and find a basis for $\operatorname{Span}(S)$.
a. $S=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$.
b. $S=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}$.

HINT: Form a matrix A with the elements of S as rows. (These rows can be in any order.) Do Gaussian elimination on A to form a matrix A^{\prime}. Standard linear algebra (which you may appeal to here) tells us that

1. S is linearly independent if and only if A^{\prime} contains no non-zero rows, and
2. the non-zero rows of A^{\prime} are a basis for $\operatorname{Span}(S)$.

Problem 4. Let $T=\{a, b, c\}$. [BONUS] Regard the power set $P(T)$ as a vector space over F_{2}, as in class. For each of the following subsets $S \subset P(T)$, say whether S is linearly independent, and find a basis for $\operatorname{Span}(S)$.
a. $S=\{\{a, b\},\{b, c\},\{a, b, c\}\}$,
b. $S=\{\{a, b\},\{b, c\},\{a, c\}\}$.
[HINT: For V any finite dimensional vector space over a field F and B a basis for V, the function $\gamma: V \rightarrow F^{|B|}$ defined by $\gamma(v)=[v]_{B}$ is easily checked to be an isomorphism. If $f: V \rightarrow W$ is any isomorphism of vector spaces, f maps linearly independent sets to linearly independent sets. Now recall that we may identity T with a basis for $P(T)$. Represent elements of $P(T)$ as vectors in F_{2}^{3}, with respect to this basis, and carry out the computation as in the previous problem.]

Problem 5. Consider the linear map $f: F_{2}^{3} \rightarrow F_{2}^{3}$ given by

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

a. Compute a basis for ker f. [HINT: To do this, you can use the usual Gaussian Elimination + backsolve approach that you learned in your linear algebra class for solving linear systems.]
b. Compute a basis for $\operatorname{im} f$. [HINT: $\operatorname{im} f$ is the span of the columns of A.]

Problem 6. Repeat the computations of the problem above, but now taking

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Problem 7. Suppose $f: F_{2}^{2} \rightarrow F_{2}^{3}$ is a linear map such that $f(1,1)=(1,1,0)$ and $f(0,1)=(0,1,0)$. Represent f as a matrix with respect to the standard bases for F_{2}^{2} and F_{2}^{3}.

Problem 8. Suppose $g: F_{2}^{3} \rightarrow F_{2}^{3}$ is a linear map such that

$$
\begin{aligned}
g(1,1,1) & =(1,0,0) \\
g(1,1,0) & =(0,1,0) \\
g(0,1,0) & =(0,0,1)
\end{aligned}
$$

Represent g as a matrix with respect to the standard basis for F_{2}^{3}.

Problem 9. For f and g as in the previous two problems, represent $g \circ f$ and g as a matrix with the respect to the standard bases for F_{2}^{2} and F_{2}^{3}.

Problem 10. Prove that a linear map $f: V \rightarrow W$ is an injection if and only if $\operatorname{ker} f=\{\overrightarrow{0}\}$.

