AMAT 584 Homework 4

Due Friday, April 10

Problem 1. Which of the following subsets of \mathbb{R}^{2} is a subspace? For subsets which are not a subspace, explain your answer.
a. $\{(x, y) \mid x=3 y, y \geq 0\}$, Answer: Not a subspace. Not closed under scalar multiplication.
b. $\{(x, y) \mid x=3 y\}$, Answer: It's a subspace. It's easy to check that this is closed under addition and scalar multiplication.
c. $\{(x, 3) \mid x \in \mathbb{R}\}$, Answer: Not a subspace. Not closed under scalar multiplication or addition.
d. $\left\{\left(x, x^{2}\right) \mid x \in \mathbb{R}\right\}$. Answer: Not a subspace. Not closed under scalar multiplication or addition.

Problem 2. For each of the following pairs of sets X and Y, compute the symmetric difference of X and Y :
a. $X=\{1,2,3\}, Y=\{2,3,4\}$, Answer: $\{1,4\}$
b. $X=\{1,2,3\}, Y=\{1,2,3\}$, Answer: $\}$.
c. $X=\{1,2,3\}, Y=\{4,5,6\}$. Answer: $\{1,2,3,4,5,6\}$.

Problem 3. For each of the following subsets S of F_{2}^{4}, say whether S is linearly independent, and find a basis for $\operatorname{Span}(S)$.
a. $S=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$.
b. $S=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}$.

HINT: Form a matrix A with the elements of S as rows. (These rows can be in any order.) Do Gaussian elimination on A to form a matrix A^{\prime}. Standard linear algebra (which you may appeal to here) tells us that

1. S is linearly independent if and only if A^{\prime} contains no non-zero rows, and
2. the non-zero rows of A^{\prime} are a basis for $\operatorname{Span}(S)$.

Answer: a. Yes, linearly independent. S is thus a basis for $\operatorname{Span}(S)$.
b. Not linearly independent: The third column is a sum of the first two. A basis computed as in the hint is

$$
S^{\prime}=\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\} .
$$

Problem 4 (BONUS). Let $T=\{a, b, c\}$. Regard the power set $P(T)$ as a vector space over F_{2}, as in class. For each of the following subsets $S \subset P(T)$, say whether S is linearly independent, and find a basis for $\operatorname{Span}(S)$.
a. $S=\{\{a, b\},\{b, c\},\{a, b, c\}\}$,
b. $S=\{\{a, b\},\{b, c\},\{a, c\}\}$.
[HINT: For V any finite dimensional vector space over a field F and B a basis for V, the function $\gamma: V \rightarrow F^{|B|}$ defined by $\gamma(v)=[v]_{B}$ is easily checked to be an isomorphism. If $f: V \rightarrow W$ is any isomorphism of vector spaces, f maps linearly independent sets to linearly independent sets. Now recall that we may identity T with a basis for $P(T)$. Represent elements of $P(T)$ as vectors in F_{2}^{3}, with respect to this basis, and carry out the computation as in the previous problem.]

Answer: a. Linearly independent, so S is a basis for $\operatorname{Span}(S)$.
b. Not linearly independent, as the third element is the sum of the first two. $\{\{a, b\},\{b, c\}\}$ is a basis for $\operatorname{Span}(S)$.

Problem 5. Consider the linear map $f: F_{2}^{3} \rightarrow F_{2}^{3}$ given by

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

a. Compute a basis for $\operatorname{ker} f$. [HINT: To do this, you can use the usual Gaussian Elimination + backsolve approach that you learned in your linear algebra class for solving linear systems.]
b. Compute a basis for $\operatorname{im} f$. [HINT: $\operatorname{im} f$ is the span of the columns of A.]

Answer: a. Applying Gaussian elimination to A gives the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Applying backsolve gives that the solution set to $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=0$ is

$$
\left\{\left.z\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \right\rvert\, z \in F_{2}\right\}
$$

This is exactly the set of elements of $\operatorname{ker}(f)$. Thus,

$$
\left\{\left.\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \right\rvert\, z \in F_{2}\right\}
$$

is a basis for $\operatorname{ker}(f)$.
b. The following is a basis for $\operatorname{im} f$, obtained using the method of problem 3 :

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Problem 6. Repeat the computations of the problem above, but now taking

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Answer: a. Solving the linear system as above, we get that as a set,

$$
\operatorname{ker}(f)=\left\{\left.\left(\begin{array}{l}
z \\
y \\
z
\end{array}\right) \right\rvert\, z, y \in F_{2}\right\}=\left\{\left.z\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \right\rvert\, z, y \in F_{2}\right\}
$$

Thus

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

is a basis for $\operatorname{ker}(f)$.
Problem 7. Suppose $f: F_{2}^{2} \rightarrow F_{2}^{3}$ is a linear map such that $f(1,1)=(1,1,0)$ and $f(0,1)=(0,1,0)$. Represent f as a matrix with respect to the standard
bases for F_{2}^{2} and F_{2}^{3}.
Answer:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Problem 8. Suppose $g: F_{2}^{3} \rightarrow F_{2}^{3}$ is a linear map such that

$$
\begin{aligned}
g(1,1,1) & =(1,0,0), \\
g(1,1,0) & =(0,1,0) \\
g(0,1,0) & =(0,0,1) .
\end{aligned}
$$

Represent g as a matrix with respect to the standard basis for F_{2}^{3}.
Answer:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Problem 9. For f and g as in the previous two problems, represent $g \circ f$ and g as a matrix with the respect to the standard bases for F_{2}^{2} and F_{2}^{3}. Answer: Multiply the matrices in the previous two problems (see Lecture 27, page 2). We get

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right)
$$

Problem 10. Prove that a linear map $f: V \rightarrow W$ is an injection if and only if ker $f=\{\overrightarrow{0}\}$.

Answer: First, we prove that $g(\overrightarrow{0})=\overrightarrow{0}$ for any linear map g : We have $g(\overrightarrow{0})=g(\overrightarrow{0}+\overrightarrow{0})=g(\overrightarrow{0})+g(\overrightarrow{0})$. Adding $-g(\overrightarrow{0})$ to both sides gives $g(\overrightarrow{0})=\overrightarrow{0}$.

Now suppose $f: V \rightarrow W$ is an injection. By the above, $f(\overrightarrow{0})=\overrightarrow{0}$, so since f is an injection, we have $f(\vec{v}) \neq 0$ for all $v \neq \overrightarrow{0}$. Thus ker $f=\{\overrightarrow{0}\}$. Conversely, suppose ker $f=\{\overrightarrow{0}\}$. Suppose we have $\vec{v}, \vec{v}^{\prime} \in V$ with $f(v)=f\left(v^{\prime}\right)$. Then $\overrightarrow{0}=f(v)-f\left(v^{\prime}\right)=f\left(v-v^{\prime}\right)$, so $v-v^{\prime} \in \operatorname{ker} f$. But ker $f=\{0\}$, so $v-v^{\prime}=0$. Adding v^{\prime} to both sides gives $v=v^{\prime}$. Hence f is an injection.

