
AMAT 584 Homework 4

Due Friday, April 10

Problem 1. Which of the following subsets of R2 is a subspace? For subsets
which are not a subspace, explain your answer.

a. {(x, y) | x = 3y, y ≥ 0}, Answer: Not a subspace. Not closed under
scalar multiplication.

b. {(x, y) | x = 3y}, Answer: It’s a subspace. It’s easy to check that this
is closed under addition and scalar multiplication.

c. {(x, 3) | x ∈ R}, Answer: Not a subspace. Not closed under scalar
multiplication or addition.

d. {(x, x2) | x ∈ R}. Answer: Not a subspace. Not closed under scalar
multiplication or addition.

Problem 2. For each of the following pairs of sets X and Y , compute the
symmetric difference of X and Y :

a. X = {1, 2, 3}, Y = {2, 3, 4}, Answer: {1, 4}

b. X = {1, 2, 3}, Y = {1, 2, 3}, Answer: {}.

c. X = {1, 2, 3}, Y = {4, 5, 6}. Answer: {1, 2, 3, 4, 5, 6}.

Problem 3. For each of the following subsets S of F 4
2 , say whether S is linearly

independent, and find a basis for Span(S).

a. S =




1
0
0
1

 ,


1
1
0
1

 ,


1
1
0
0


.

b. S =




1
0
1
0

 ,


1
1
0
1

 ,


0
1
1
1

 ,


1
0
0
0


.

HINT: Form a matrix A with the elements of S as rows. (These rows can be
in any order.) Do Gaussian elimination on A to form a matrix A′. Standard
linear algebra (which you may appeal to here) tells us that
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1. S is linearly independent if and only if A′ contains no non-zero rows, and

2. the non-zero rows of A′ are a basis for Span(S).

Answer: a. Yes, linearly independent. S is thus a basis for Span(S).
b. Not linearly independent: The third column is a sum of the first two. A
basis computed as in the hint is

S′ =




1
0
1
0

 ,


0
1
1
1

 ,


0
0
1
0


 .

Problem 4 (BONUS). Let T = {a, b, c}. Regard the power set P (T ) as a
vector space over F2, as in class. For each of the following subsets S ⊂ P (T ),
say whether S is linearly independent, and find a basis for Span(S).

a. S = {{a, b}, {b, c}, {a, b, c}},

b. S = {{a, b}, {b, c}, {a, c}}.

[HINT: For V any finite dimensional vector space over a field F and B a basis
for V , the function γ : V → F |B| defined by γ(v) = [v]B is easily checked to be
an isomorphism. If f : V → W is any isomorphism of vector spaces, f maps
linearly independent sets to linearly independent sets. Now recall that we may
identity T with a basis for P (T ). Represent elements of P (T ) as vectors in F 3

2 ,
with respect to this basis, and carry out the computation as in the previous
problem.]

Answer: a. Linearly independent, so S is a basis for Span(S).
b. Not linearly independent, as the third element is the sum of the first two.
{{a, b}, {b, c}} is a basis for Span(S).

Problem 5. Consider the linear map f : F 3
2 → F 3

2 given by

f

xy
z

 = A

xy
z

 ,

where

A =

1 0 1
0 1 1
1 1 0

 .

a. Compute a basis for ker f . [HINT: To do this, you can use the usual
Gaussian Elimination + backsolve approach that you learned in your linear
algebra class for solving linear systems.]

b. Compute a basis for im f . [HINT: im f is the span of the columns of A.]
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Answer: a. Applying Gaussian elimination to A gives the matrix

A =

1 0 1
0 1 1
0 0 0

 .

Applying backsolve gives that the solution set to A

xy
z

 = 0 is

z
1

1
1

∣∣∣∣∣∣ z ∈ F2

 .

This is exactly the set of elements of ker(f). Thus,
1

1
1

∣∣∣∣∣∣z ∈ F2


is a basis for ker(f).

b. The following is a basis for imf , obtained using the method of problem
3: 

1
0
1

 ,

0
1
1

 .

Problem 6. Repeat the computations of the problem above, but now taking

A =

1 0 1
1 0 1
1 0 1

 .

Answer: a. Solving the linear system as above, we get that as a set,

ker(f) =


zy
z

∣∣∣∣∣∣ z, y ∈ F2

 =

z
1

0
1

+ y

0
1
0

∣∣∣∣∣∣z, y ∈ F2

 .

Thus 
1

0
1

 ,

0
1
0


is a basis for ker(f).

Problem 7. Suppose f : F 2
2 → F 3

2 is a linear map such that f(1, 1) = (1, 1, 0)
and f(0, 1) = (0, 1, 0). Represent f as a matrix with respect to the standard
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bases for F 2
2 and F 3

2 .
Answer: 1 0

0 1
0 0

 .

Problem 8. Suppose g : F 3
2 → F 3

2 is a linear map such that

g(1, 1, 1) = (1, 0, 0),

g(1, 1, 0) = (0, 1, 0)

g(0, 1, 0) = (0, 0, 1).

Represent g as a matrix with respect to the standard basis for F 3
2 .

Answer: 0 0 1
1 0 1
1 1 0

 .

Problem 9. For f and g as in the previous two problems, represent g ◦ f and
g as a matrix with the respect to the standard bases for F 2

2 and F 3
2 . Answer:

Multiply the matrices in the previous two problems (see Lecture 27, page 2).
We get 0 0

1 0
1 1

 .

Problem 10. Prove that a linear map f : V →W is an injection if and only if
ker f = {~0}.

Answer: First, we prove that g(~0) = ~0 for any linear map g: We have
g(~0) = g(~0 +~0) = g(~0) + g(~0). Adding −g(~0) to both sides gives g(~0) = ~0.

Now suppose f : V →W is an injection. By the above, f(~0) = ~0, so since f
is an injection, we have f(~v) 6= 0 for all v 6= ~0. Thus ker f = {~0}. Conversely,
suppose ker f = {~0}. Suppose we have ~v,~v′ ∈ V with f(v) = f(v′). Then
~0 = f(v)− f(v′) = f(v − v′), so v − v′ ∈ ker f . But ker f = {0}, so v − v′ = 0.
Adding v′ to both sides gives v = v′. Hence f is an injection.
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