AMAT 584 Homework 5

Due Wednesday April 15

Problem 1. For each of the following simplicial complexes X
a $X=\{[a],[b],[c],[d],[a, b],[c, d]\}$,
b. $X=\{[a],[b],[c],[d],[e],[a, b],[b, c],[c, d],[a, d],[a, c],[a, e],[b, e],[a, b, c]\}$,
do the following:

1. Sketch the simplicial complex.
2. Represent each non-zero boundary map ∂_{j} in the chain complex of X as a matrix with respect to the standard bases for $C_{j}(X)$ and $C_{j-1}(X)$. Use the given order on j-simplices.
3. Compute the dimension of each $Z_{j}(X), B_{j}(X)$, and $H_{j}(X)$, for $j \geq 0$.

Problem 2. For X as in problem 1a., explicitly write down all of the cosets of $H_{0}(X)$. Sketch each element of each coset.

Problem 3. For X as in problem 1b., explicitly write down the coset of $H_{1}(X)$ containing each of the following elements of $Z_{1}(X)$, and sketch each element of the coset.
a. $z_{1}=[a, b]+[b, c]+[a, c]$,
b. $z_{2}=[c, d]+[a, d]+[a, c]$,
c. $z_{3}=[a, b]+[a, e]+[b, e]$.

Problem 4. For both simplicial complexes considered in problem 1, give a basis for each non-zero $H_{j}(X)$. [Hint: $\left\{z_{1}, z_{2}, z_{3}\right\}$, as defied in the previous problem, is a basis for $Z_{1}(X)$.]

