AMAT 584 Homework 5

Due Wednesday April 15

Problem 1. For each of the following simplicial complexes X
a $X=\{[a],[b],[c],[d],[a, b],[c, d]\}$,
b. $X=\{[a],[b],[c],[d],[e],[a, b],[b, c],[c, d],[a, d],[a, c],[a, e],[b, e],[a, b, c]\}$, do the following:

1. Sketch the simplicial complex.
2. Represent each non-zero boundary map ∂_{j} in the chain complex of X as a matrix with respect to the standard bases for $C_{j}(X)$ and $C_{j-1}(X)$. Use the given order on j-simplices.
3. Compute the dimension of each $Z_{j}(X), B_{j}(X)$, and $H_{j}(X)$, for $j \geq 0$.

Answer: a. The only non-zero boundary matrix is:

$$
\begin{aligned}
{\left[\delta_{1}\right]=} & \left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right) \\
\left.\operatorname{dim}\left(Z_{j}\right)(X)\right) & = \begin{cases}4 & \text { if } j=0 \\
0 & \text { otherwise }\end{cases} \\
\left.\operatorname{dim}\left(B_{j}\right)(X)\right) & = \begin{cases}2 & \text { if } j=0 \\
0 & \text { otherwise }\end{cases} \\
\left.\operatorname{dim}\left(H_{j}\right)(X)\right) & = \begin{cases}2 & \text { if } j=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

b. The non-zero boundary matrices are:

$$
\begin{aligned}
& \left.\operatorname{dim}\left(Z_{j}\right)(X)\right)= \begin{cases}5 & \text { if } j=0 \\
3 & \text { if } j=1 \\
0 & \text { otherwise }\end{cases} \\
& \left.\operatorname{dim}\left(B_{j}\right)(X)\right)= \begin{cases}4 & \text { if } j=0 \\
1 & \text { if } j=1 \\
0 & \text { otherwise }\end{cases} \\
& \left.\operatorname{dim}\left(H_{j}\right)(X)\right)= \begin{cases}1 & \text { if } j=0 \\
2 & \text { if } j=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Problem 2. For X as in problem 1a., explicitly write down all of the cosets of $H_{0}(X)$. Sketch each element of each coset.

Answer: There are four cosets: see below for the sketches

$$
\begin{aligned}
B_{0}(X) & =\{0,[a]+[b],[c]+[d],[a]+[b]+[c]+[d]\}, \\
{[a]+B_{0}(X) } & =\{[a],[b],[a]+[c]+[d],[b]+[c]+[d]\}, \\
{[c]+B_{0}(X) } & =\{[c],[a]+[b]+[c],[d],[a]+[b]+[d]\}, \\
([a]+[c])+B_{0}(X) & =\{[a]+[c],[b]+[c],[a]+[d],[b]+[d]\}
\end{aligned}
$$

Problem 3. For X as in problem 1b., explicitly write down the coset of $H_{1}(X)$ containing each of the following elements of $Z_{1}(X)$, and sketch each element of the coset.
a. $z_{1}=[a, b]+[b, c]+[a, c]$,
b. $z_{2}=[c, d]+[a, d]+[a, c]$,
c. $z_{3}=[a, b]+[a, e]+[b, e]$.

Answer: Note that

$$
B_{1}(X)=\{0,[a, b]+[b, c]+[a, c]\} .
$$

Hence the cosets are

$$
\begin{aligned}
z_{1}+B_{1}(X) & =B_{1}(X) \\
z_{2}+B_{1}(X) & =\{[c, d]+[a, d]+[a, c],[a, b]+[b, c] \quad+[c, d]+[a, d]\} \\
z_{3}+B_{1}(X) & =\{[a, b]+[a, e]+[b, e],[a, e]+[b, e]+[b, c]+[a, c]\}
\end{aligned}
$$

see below for the sketches

Problem 4. For both simplicial complexes considered in problem 1, give a basis for each non-zero $H_{j}(X)$. [Hint: $\left\{z_{1}, z_{2}, z_{3}\right\}$, as defied in the previous problem, is a basis for $Z_{1}(X)$.]

Answer:

a. Note that has X has two components, call them C_{1} and C_{2}, with $a \in C_{1}$ and $b \in C_{2}$. Thus, according to a proposition from class/the notes,

$$
\left\{[a]+B_{0}(X),[b]+B_{0}(X)\right\}
$$

is is a basis for $H_{0}(X)$.
b. The singleton set $\left\{[a]+B_{0}(X)\right\}$ is a basis for $H_{0}(X)$. Using the answer to the last problem, the hint, and the proposition about bases for homology from lecture, we have that

$$
\left\{z_{2}+B_{1}(X), z_{3}+B_{1}(X)\right\}
$$

is a basis for $H_{1}(X)$.
sketches for problem 2:
$B_{0}(x)$

$[a]+B_{0}(x)$

$[c]+B_{0}(x)$

3

Sketches for problem 3:

$$
z_{1}+B_{1}(x)=B_{1}(x)
$$

