Name: \qquad

Instructions:

- The exam is due by email on May 15th at 11.59 p.m.
- Please show your work, but please make your written answers as concise as possible.
- You are not allowed to discuss the exam with anyone in any shape or form, except me. Any exam showing clear evidence of collaboration will be penalized heavily.

Problem 1 (6 points). Which of the following sets is an abstract simplical complex? For each, if the answer is no, explain why; and if the answer is yes, give the dimension of the complex, sketch its geometric realization up to homeomorphism, and compute its Euler characteristic,
a. $\{[a],[b],[a, b],[b, c]\}$,
b. $\{[a],[b],[c],[a, c]\}$,
c. $\{[a],[b],[c],[a, b],[b, c],[a, c]\}$,

Problem 2 (2 points). Give an example of a finite set $X \subset \mathbb{R}^{2}$ and $r \in[0, \infty)$ such that $\operatorname{VR}(X, r)$ is 3-dimensional and has two connected components.
Problem 3 (8 points). Let $X=\{(0,0),(2,0),(1, \sqrt{3})\} \subset \mathbb{R}^{3}$. Regard X as a metric space with the Euclidean distance.
a. Compute the Vietoris-Rips filtration $\operatorname{VR}(X)$.
b. Compute and plot the Euler characteristic curve of $\operatorname{VR}(X)$.
c. Compute all persistent homology barcodes of $\operatorname{VR}(X)$; that is, compute $\operatorname{Barc}\left(H_{j}(\operatorname{VR}(X))\right)$ for all $j \geq 0$.
d. Compute all persistent homology barcodes of Čech (X). [HINT: Let $\sigma=$ $[(0,0),(2,0),(1, \sqrt{3})]$. Then $\sigma \in \operatorname{Čech}(X, r)$ iff $r \geq \frac{2 \sqrt{3}}{3}$. That is, $\operatorname{birth}(\sigma)=$ $\frac{2 \sqrt{3}}{3}$.]

Problem 4 (2 points). Prove that for $f: V \rightarrow W$ any linear map, $\operatorname{im} f$ is a subspace of W.

Problem 5 (12 points). For each of the following simplicial complexes X
a. $X=\{[a],[b],[c],[d],[a, b],[b, c],[a, c]\}$,
b. $X=\{[a],[b],[c],[d],[a, b],[b, c],[a, c],[c, d],[a, b, c]\}$,
do the following:

1. Sketch the simplicial complex.
2. Represent each non-zero boundary map ∂_{j} in the chain complex of X as a matrix with respect to the standard bases for $C_{j}(X)$ and $C_{j-1}(X)$. Use the given order on j-simplices.
3. Compute the dimension of each $Z_{j}(X), B_{j}(X)$, and $H_{j}(X)$, for $j \geq 0$.
4. Give a basis for each non-zero $H_{j}(X)$.

Problem 6 (4 points). For X as in part a. of the previous problem, explicitly write down all of the cosets of $H_{0}(X)$, as in the posted solution to problem 2 of HW 5.

Problem 7 (2 points). Suppose F is a filtration whose 1st persistent homology barcode is $\{[1,4),[2,6)\}$.
a. What is $\operatorname{dim}\left(H_{1}\left(F_{3}\right)\right)$?
b. What is $\operatorname{dim}\left(H_{1}\left(F_{5}\right)\right)$?

