AMAT 584

Name: _

Instructions:

- The exam is due by email on May 15th at 11.59 p.m.
- Please show your work, but please make your written answers *as concise as possible.*
- You are not allowed to discuss the exam with *anyone* in any shape or form, except me. Any exam showing clear evidence of collaboration will be penalized heavily.

Problem 1 (6 points). Which of the following sets is an abstract simplical complex? For each, if the answer is no, explain why; and if the answer is yes, give the dimension of the complex, sketch its geometric realization up to homeomorphism, and compute its Euler characteristic,

- a. $\{[a], [b], [a, b], [b, c]\},\$
- b. $\{[a], [b], [c], [a, c]\},\$
- c. $\{[a], [b], [c], [a, b], [b, c], [a, c]\},\$

Problem 2 (2 points). Give an example of a finite set $X \subset \mathbb{R}^2$ and $r \in [0, \infty)$ such that VR(X, r) is 3-dimensional and has two connected components.

Problem 3 (8 points). Let $X = \{(0,0), (2,0), (1,\sqrt{3})\} \subset \mathbb{R}^3$. Regard X as a metric space with the Euclidean distance.

- a. Compute the Vietoris-Rips filtration VR(X).
- b. Compute and plot the Euler characteristic curve of VR(X).
- c. Compute all persistent homology barcodes of VR(X); that is, compute $Barc(H_i(VR(X)))$ for all $j \ge 0$.
- d. Compute all persistent homology barcodes of $\check{\operatorname{Cech}}(X)$. [HINT: Let $\sigma = [(0,0), (2,0), (1,\sqrt{3})]$. Then $\sigma \in \check{\operatorname{Cech}}(X,r)$ iff $r \geq \frac{2\sqrt{3}}{3}$. That is, $\operatorname{birth}(\sigma) = \frac{2\sqrt{3}}{3}$.]

Problem 4 (2 points). Prove that for $f: V \to W$ any linear map, $\operatorname{im} f$ is a subspace of W.

Problem 5 (12 points). For each of the following simplicial complexes X

- a. $X = \{[a], [b], [c], [d], [a, b], [b, c], [a, c]\},\$
- b. $X = \{[a], [b], [c], [d], [a, b], [b, c], [a, c], [c, d], [a, b, c]\},\$

do the following:

- 1. Sketch the simplicial complex.
- 2. Represent each non-zero boundary map ∂_j in the chain complex of X as a matrix with respect to the standard bases for $C_j(X)$ and $C_{j-1}(X)$. Use the given order on *j*-simplices.
- 3. Compute the dimension of each $Z_j(X)$, $B_j(X)$, and $H_j(X)$, for $j \ge 0$.
- 4. Give a basis for each non-zero $H_j(X)$.

Problem 6 (4 points). For X as in part a. of the previous problem, explicitly write down all of the cosets of $H_0(X)$, as in the posted solution to problem 2 of HW 5.

Problem 7 (2 points). Suppose F is a filtration whose 1st persistent homology barcode is $\{[1,4), [2,6)\}$.

- a. What is $\dim(H_1(F_3))$?
- b. What is $\dim(H_1(F_5))$?