MAT 584 Lecture 10
Today: Cech complexes, Rips complexes.

Definition:
For $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{n}$ and $r>0$, the Cech complex Cech (X, r) is the abstact simplical complex with vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$, such that

$$
\begin{aligned}
& {\left[x_{j o}, \ldots, x_{j k}\right] \in \stackrel{C}{C c h}(x, 1) \text { iff }} \\
& B\left(x_{j 0}, r\right) \cap B\left(x_{j 1}, r\right) \cap \cdots \cap B\left(x_{j k}, r\right) \neq \phi .
\end{aligned}
$$

Example from last lecture:
Let $x=\{(0,0),\{(1,0),(0,1),(1,1)\}$.

$$
\left(\operatorname{cech}(x, r)=\left\{\left[x_{1}\right],\left[x_{2}\right],\left[x_{3}\right],\left[x_{4}\right],\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{4}\right],\left[x_{3}, x_{4}\right]\right\}\right.
$$

Note that $\left|{ }^{\prime} \mathrm{Cech}(X, r)\right|$ is homotopy equivalent to $U(X, r): U(X, r)$ deformation retrads onto |čech (X, r).|

Now let r^{\prime} be large enough so that the center point $\left(\frac{1}{2} \frac{1}{2}\right)$ is contained in each closed ball, lie $r^{\prime} \geqslant \frac{\sqrt{2}}{2}$.

Zech $\left(X, r^{\prime}\right)$ contains all possible simplices on the vertex set $\left\{x_{1}, . ., x_{4}\right\}$, ie.,

$$
\begin{aligned}
& \operatorname{Cech}(x, 1)= \\
& \left\{\left[x_{1}\right],\left[x_{2}\right],\left[x_{3}\right],\left[x_{4}\right],\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{4}\right],\left[x_{3}, x_{4}\right],\left[x_{2}, x_{3}\right],\left[x_{1}, x_{4}\right]\right\} \\
& \left.\left.\left[x_{1}, x_{2}, x_{3}\right],\left[x_{1}, x_{2}, x_{4}\right],\left[x_{1}, x_{3}, x_{4}\right],\left[x_{2}, x_{3}, x_{4}\right],\left[x_{1}, x_{2}, x_{3}\right]\right\}\right\}
\end{aligned}
$$

Definition: The k-skeleton of a simplicial complex is the subcomplex consisting of all simplices of dimension at most k.

Thus, the 1-skeleton of Mech (X, r) looks like this.

The 1-skeleton is the complete graph on 4 vertices, ie, every pair of vertices is connected by an edge.
$\left|\operatorname{Cech}\left(X, r^{\prime}\right)\right|=\left|\operatorname{Geo}\left(\operatorname{Cech}\left(X, r^{\prime}\right)\right)\right|$ is the 3 -simplex
$\left[e_{1}, e_{2}, e_{3}, e_{4}\right]$ in \mathbb{R}^{4}.
This is a tetrahedron.
A more intuitive way to think about $\mid{ }^{\vee}\left(e c h\left(x, r^{\prime}\right) \mid\right.$ is this:-Start with 4 points.

- Gie in an edge between each pair of points
- Tor each rimple of points, glue in a triangle.
- Glue in the solid tetiahedion.

Note in particular that $\left|\operatorname{cech}\left(X, r^{\prime}\right)\right|$ does not sit inside \mathbb{R}^{2}, even though X sits inside \mathbb{R}^{2}.

Remark: In general, if X is an (astiad) simplicial complex with $|V(x)|=k+1$, and X contains all nou-emply subsets of $V(X)$, then $|X|$ is a k-simplex.

Thus, in this case, we call X a k-simplex.
Thus, in the context of simplicial complexes, "simplex" has several meanings, but they are all very dosely related.

Note that, as above \mid mech $\left(X, r^{\prime}\right) \mid$ and $U\left(X, r^{\prime}\right)$ are homotopy equivalent: Both are hie to a point.
Theorem: For any finite $X<\mathbb{R}^{n}$ and $r \geqslant 0$, $U(X, r) \simeq \operatorname{~}(\operatorname{cch}(X, 1)$.

T means "is homotopy equivalent to"
The theorem is not that easy to prove. It is an immediate consequence of a more general result called the nerve theorem, which is very important in topology.

Consider $X=\left\{x_{1}, \ldots, x_{3}\right\}$ as above, and r so that the balls $B\left(x_{i}, 1\right)$ intersect as shown.
What is Sech (x, r) ?
What is ICech (X, r) ??

