AMAT 584 Lecture 14 2/21/20

Today: Fittrations in TDA Eler Characteristic Curves

In the last 3 lectures, we discussed three constructions of simplicial complexes from data:

- · Čech complex
- Kips complex
- Delaunay/Alpha complex.

All depend on a radius parameter r.

- Often choosing a single value of r is problematic:
 Topology of The simplicial complex many be unstable writ r
- Different values of r may capture different topological features of the data.
- Even when there is a good choice of r, we may not know it a priori,

Hevailing wisdom: As in hierarchical dustering, one should not consider a single value of r, but look at all values at once.

Recall the following definition from TDA I:
3
Dcf: A filtration (Indexed by [000)) is a collection of topological spaces
547 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F= ZF, 3 re[0,00) such that F, CFs whenever 14s.
(60,00)
This definition admits many variants:
This definition admits many variants: - Simplicial complexes instead of topological spaces - Filtrations indexed by IN, Z, or R instead of [0,00).
Simplicial complexes instead of topological spaces
- Filtrations indexed by M. Z. or R instead of 1000).
() () () () () () () () () ()
Λ.1
Allowing r to vary in the various constructions we have seen
cives us a like time.
Allowing r to vary in the various constructions we have seen gives us a filtration:
Let XCIR' be finite.
Filtractions constructed from X:
= 1) = (- - - - - - - - - -
Union-of balls filleation U(N) (UCN) Sie[Opo) we saw
- (ech filtration Cech(X) = { Cech(X, 1)} crops this in
- Deline City to Del(Y)= { Nel(Y ()}
- Union-of-balls filtration $U(X) = \{U(X, \Gamma)\}_{\Gamma \in [0,\infty)}$ we saw - Cech filtration Cech(X) = $\{Cech(X, \Gamma)\}_{\Gamma \in [0,\infty)}$ TDA I - Delaway filtration Del(X) = $\{Del(X, \Gamma)\}_{\Gamma \in [0,\infty)}$
And for X any finite metric space, we have the - Vietoris-Rips filtration $VR(X) = \{VR(X, 1)\}_{1 \in [0,\infty)}$.
1/2 La D . (1) 1 NO(1) = (1/0/4 a)?
~ Vietoris-Kips tiltration VICLX)= {VK(X,1)}re[0,00).

Persistent Homology analyzes data by first constructing a filtration of the data, and then analyzing the topology of the filtration.

In practical comptations, the most common choices are the Vietoris-Rips and Delaunay Filtrations.

Note that even though [0,00) is infinite, since X is finite, the above filtrations contain only finitely many different simplicial complexes, so these are computable.

Euler characteristic conves

- One simple topological topological signature of a filtration.

- Used in some applications, e.g. recent work on glioblastoma, a a brain cancer.

For F= {F, }rele,00) a simplicial filtration, let

XF:[00) > Z be the function given by

$$\chi^{f}(r) = \chi(f_r)$$

Euler characteristic of Fr.

We call this the <u>Euler Characteristic</u> Curve (E.C.C.) of <u>F.</u>

Example:
$$X = \{(0,0), (2,0), (0,2)\}$$
 $VR(X) = \{(0,0), (2,0), (0,2)\}$

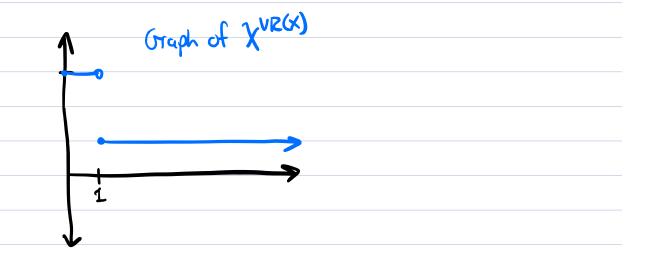
for $r \in [0,1)$

for $r \in [1,\sqrt{2})$

for $r > \sqrt{2}$

So
$$X^{VR(X)} = \{3 \text{ for } \Gamma \in [0,1) \}$$

1 for $\Gamma \in [1,\sqrt{2}) = \{3 \text{ for } \Gamma \in [0,1] \}$
1 for $\Gamma \in [\sqrt{2},\infty)$



Can use standard tools/ideas in stats for analyzing E.E.C.'s.

Disadvantages of the E.C.C. of data:
- Not stable (at least theoretically)
- Not readily interpreted
- Not readily interpreted - Rather coarse invariant.
Using hamology, we can get invariants which are
Using hamology, we can get invariants which are -Stable (in a sense)
- More easily interpreted
- More easily interpreted - Capture more information about the topology of the data.