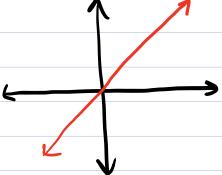
AMAT 584 Lecture 15, 2/24/20

Today (and next several lectures): Abstract Linear Algebra

Our Motivation: We will need two big ideas from linear algebra to define and work with homology:


1) The dimension of a vector space,

2) The quotient of a vector space.

Abstract Vector Spaces (Introductory Remarks)

In typical introductory linear algebra classes, one considers the tollowing vector spaces:

- Subspaces of these, e.g. a line through the origin is a subspace of 1R2:

In linear algebra, one is concerned primorily with two operations on vector spaces: addition and scalar multiplication.

For example, (1,3)+(2,5)=(1+2,3+5)=(3,8) (addition) $7\cdot(1,3)=(7\cdot1,7\cdot3)$ (scalar multiplication)

In many places in mathematics, including topology, we need a more abstract definition of a vector space which encompares These examples.

Understanding the general definition well will give you a fuller understanding of the familiar cases of IRM and CM!

Fields: The first ingredient for the definition of an abstract vector space is a field.

<u>Definition</u>: A field is a set F, together with finitions

Note: + (a,b) is written as atb

· (a,b) is written as a·b.

satisfing all the familiar properties of arithmetic over the rational numbers Q or real numbers IR, namely the following:

Associativity of addition and multiplication:

Commutativity of addition and multiplication:

Additive and multiplicative identities:

There exist distinct elements of F, which we will write as O and I, such that a+O=a and I:a=a Haff.

additive identity

multiplicative identity.

Note: O and I needlen't be the usual integers O and I, but they are when F=Q, IR, or C.

Additive inverses:

Yatf, there exists an element in F, denoted a, such that a+-a=0 This property implies that subtraction makes sense.

Multiplicative inverses:

Y non-zero aff, I an element in F denoted at or a, such that that a = 1

Distributivity: a·(b+c)=(a·b)+(a·c).

Examples: As suggested above, Q and IR are camples of fields.

So are the complex numbers C. (Multiplicative inverse of $O \neq Z = a + b + C$ is $\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} = i$

Non-example of a field: The set of integers Z satisfies all the properties of a field except the existence of multiplicative inverses.

Rime Fields

by the following tables

Then one can check with these choices of addition and multiplication, Fz is a field.

In practical applications of TDA this is the most important field!

More generally, let ρ be a prime number, e.g. $\rho=2$, 3, 5, or 7.

Let Fp={0,1,...,p-1}.

Define +: Fp×Fp -> Fp by taking atb to be the remainder of the usual integer sum after dividing by p.

e.g. in Fs, 4+4=3.

Similarly, define "Fp+fp-> Fp by taking a b to be the remainder of the usual integer product after dividing by p.

e.g. in F5, 4.4=1.

With these choices of addition and multiplication, Ip is a field.