ANAT 584 Lecture 18, 3/2/20
Toclay: Spanning Set Examples
Linear independence
Bases
Dimension
For $S \subset V$ a subset (not necessarily a subspace), let $\operatorname{Span}(S)=\langle S\rangle$ denote the set of all linear combinations of elements of $S$.

Fact: Span (S) is a subspace of $V$.
Definition: We say $S \subset V$ is a spanning set
if $\operatorname{span}(S)=V$. if $\operatorname{span}(S)=V$.
Example: Let $S=\{(1,1),(1,-1)\}$.
Is $S$ a spanning set for $\mathbb{R}^{2}$ ?


Yes: $\binom{x}{y} \in \mathbb{R}^{2}=\frac{1}{2}(x+y)\binom{1}{1}+\frac{1}{2}(x-y)\binom{1}{-1}$.
Example: $I_{S} S=\left\{\binom{1}{1}\binom{1}{-1},\binom{3}{7}\right\}$ is a spanning
$\mathbb{R}^{2}$ ?

Yes, egg.

$$
\binom{x}{y} \in \mathbb{R}^{2}=\frac{1}{2}(x+y)\binom{1}{1}+\frac{1}{2}(x-y)\binom{1}{-1}+O\left(\frac{3}{7}\right)
$$

Bet clearly, this is not a minimal spanning set for $\mathbb{R}^{2}$ : I can remove ( $3_{7}$ ) from $S$, and still have a spanning set.
Definiton: A spanning set $S$ is minimal if removing any one element of $S$ yields a subset which is not a spanning set.
Definition: A basis for a vector space $V$ is a minimal spanning set.
Example: $B=\left\{\binom{1}{0},\binom{0}{1}\right\}$ is a basis for $\mathbb{R}^{2}$.

$$
B=\left\{\binom{1}{0},\binom{0}{0},\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \text { is a basis for } \mathbb{R}^{3} \text {. }
$$

More generally, for any $n \geqslant 1$, field $F$, and $i \in\{1 \ldots, n\}$, let

$$
e_{i}=\left(\begin{array}{c}
n=1, \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
\vdots \\
0
\end{array}\right) \text {. } \begin{aligned}
& 1 \text { = multiplicative identity of } F \\
& \text { in the eth } \\
& 0=\text { addithe identity elsewhere }
\end{aligned}
$$

Then $B=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for $V$.
Example: $S=\{(1),(-1)\}$ is a basis for $\mathbb{R}^{2}$.

- We've already seen that it's a spanning set.
- And clearly, if we remove either vector from $S$, then we are not left with a spanning set.

Liner independence Let $S$ be a set of vectors in a vector space $V$ over a field $F$.

Def: $S$ is linearly independent if for all $\vec{v}_{1}, \ldots, \vec{v}_{k} \in S$

$$
c_{1} \vec{v}_{1}+\cdots c_{k} \vec{v}_{k}=0 \text { only if } c_{1}=c_{2}=\cdots c_{k}=0 \text {. }
$$

Example: $\left\{\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} \subset \mathbb{R}^{2}$ is int linearly independent,

$$
\text { e.g. }\binom{1}{0}+1\binom{0}{1}+-1\binom{1}{1}=0
$$

In general, to check duecty welter $\left\{v_{1} \ldots, v_{k}\right\} \in \mathbb{R}^{n}$ is linearly inclepenclent, we consider the matrix

$$
A=\left(v_{1}\left|v_{2}\right| \ldots \mid v_{k}\right),
$$

$\left\{v_{1} \ldots, v_{k}\right\}$ is linearly independent iff the only solution to $A \vec{x}=\vec{O}$ is $\overrightarrow{0}$.
(The standard way to solve this is with Gaussian dimination + backsolve, though to determine whether a non-zero solution exists, one can take a shortcut and just compute rank $(A)$ \}.

Example: $S=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\} \subset \mathbb{R}^{3}$.

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Now use backsolve:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{gathered}
x_{1}+x_{2}=0 \\
x_{2}-x_{3}=0 \Rightarrow x_{1}=x_{2}=x_{3}=0 \\
x_{3}=0
\end{gathered}
$$

So $S$ is linearly independent.

Proposition: A set $S$ of rectors in $V$ is a basis for $V$ if and only if

1. $S_{\operatorname{pan}}(s)=V$
2. $S$ is linearly independent.

The above provides an alternative definition of a basis which is perhaps the more common definition.

The proof of the proposition is easy. We will not cover it in class.

Dimension
Proposition: If $B$ and $B^{\prime}$ are both bases for a vector space $V$, then there is a bijection

$$
f: B \rightarrow B^{\prime}
$$

In particular, if either is finite, then both are, and they have the same number of efts.

