ANAT 584 Lecture 19 3/3/20
Today: Dimension
Representing an abstract vector with respect to a basis
Linear maps
Review
Let V be a vector space over a field F.
Def: A basis for V is a Minimal spanning set for V.
Equivalently, a basis for V is a linearly independent spanning set.

Proposition: Every vector space has a basis.
Proof uses Zorn's lemma, an axiom from set theory equivalent to the axiom of choice.
Proposition: If B and B^{\prime} are both bases for a vector space V, then there is a bijection $f: B \rightarrow B^{\prime}$.

We will not cover these proofs; see Axler's tart for details.
Definition: The dimension of a vector space V, dented dime (l), the number of elements in a basis for V.

By the two propositions, this number is well defined.
Examples: 1) For any Field $F_{\text {, }}$

$$
F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\}
$$

has basis $\left\{e_{1}, \ldots, e_{n}\right\}$, as discussed in the last lecture, so $\operatorname{dim}\left(F^{n}\right)=n$.

2) Let \vec{V} be any non-zero vector in \mathbb{R}_{2}^{2} and the $L=\operatorname{Span}(\{\vec{v}\})$, ie. L is the line through the origin containg \vec{v}.
Then $\{\vec{v}\}$ is a basis for L, so $\operatorname{dim}(L)=1$.
Thus a line is one-dimensional, as expected.
3) Let S be a finite set, and F be any Field.

As mentioned previously, the set $\operatorname{Fun}(S, F)$ of all functions $\gamma: S \rightarrow F$ is a vector space.

For $x \in S$, let $\delta_{x}: S \rightarrow F$ be given by

$$
\delta_{x}(y)=\left\{\begin{array}{l}
1 \\
\text { if } y=x \\
0 \\
\text { otherwise }
\end{array}\right.
$$

It is easily checked that $B=\left\{\delta_{x} \mid x \in S\right\}$ is a basis for Fun (S, F).

Clearly there is a bijection between S and B.
Thus, $\operatorname{dim}(\operatorname{Fun}(S, F))=\#$ of elements of S (possibly ∞).

In elementary linear algebra, one usually worries abas finite-dimensional vector spaces, and these will suffice for purposes in this carse (mostly).

Representing ce vector with respect to a basis
Let V be a finite dimensional vector space over the field F.

Given a fixed choice of basis $B=\left\{b_{1}, \ldots b_{n}\right\}$ for F, we can represent any vector $\vec{V} \in F$ as an element $[\vec{V}]_{B} \in F^{n}$.

To explain, we need The following:
Proposition: For \vec{v} and B as above, \vec{V} has a unique expression as a linear combination of elements of B. That is,
$\vec{V}=c_{1} b_{1}+\cdots c_{n} b_{n}$ for unique $c_{1} \ldots, c_{n} \in F$.
Proof: $\operatorname{Span}(B)=V$, so $\vec{V} \in \operatorname{Span}(B)$, so such C_{i} exist.

If $\vec{v}=c_{1} b_{1}+\ldots+c_{n} b_{n}$ for $c_{1}, \ldots, c_{n} \in F$

$$
=d_{1} b_{1}+\cdots+d_{n} b_{n} \quad d_{1} \cdots, d_{n} \in F
$$

then $\vec{O}=\left(c_{1} b_{1}+\cdots c_{n} b_{n}\right)-\left(d_{1} b_{1}+\cdots+d_{n} b_{n}\right)$

$$
=\left(c_{1}-d_{1}\right) b_{1}+\cdots+\left(c_{n}-d_{n}\right) b_{n} .
$$

B is linearly independent, so $c_{i}-d_{i}=0 \quad \forall i$, i.e, $c_{i}=d_{i}$. This ques unippeess.

We define $[v]_{B}=\left(c_{1}, \ldots, c_{n}\right) \in F_{\text {. }}^{n}$

Example: Let $\left.V=\mathbb{R}^{2}, B=\left\{\binom{1}{1}, \begin{array}{c}-1 \\ 1\end{array}\right)\right\}$.
Last lecture, we conserved that $\forall(x) \in \mathbb{R}^{2}$,

$$
\binom{x}{y}=\frac{1}{2}(x+y)\binom{1}{1}+\frac{1}{2}(x-y)\binom{1}{-1} .
$$

So $\left.\left[\begin{array}{l}x \\ y\end{array}\right)\right]_{B}=\binom{\frac{1}{2}(x+y)}{\frac{1}{2}(x-y)}$
For example, $\left.\left[\begin{array}{l}7 \\ 3\end{array}\right)\right]_{B}=\binom{\frac{1}{2}(10)}{\frac{1}{2}(4)}=\binom{5}{2}$.
The basis B gives an alternative coordinate system on \mathbb{R}^{2}.
Linear Maps
Linear algebra studies the calatem between thee obesely related things:
Solving Linear Systems

Matrix Computations

Linear maps between vector spaces

In elementary courses, linear maps are emphasized loss, but understanding their connection to linear systems and matrices can be very clarifying.
In any case, we will need linear maps to talk about homology.
Definition: A function of vector spaces $f: V \rightarrow W$, bath over F, is said to be linear if:

$$
\begin{aligned}
& f(\vec{v}+\vec{w})=f(\vec{v})+f(\vec{w}) \quad \forall \vec{v}, \vec{w} \in \vec{V} \\
& f(c \vec{v})=c f(\vec{v}) \forall \vec{v} \in \vec{V}, c \in F .
\end{aligned}
$$

Example: amy $m \times n$ matrix A with coefficients in a field F defines a linear map $T^{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
T^{A}(x)=A x .
$$

matrix-vecter multiplication

