Today: Linear maps
Definition: Let V, W be vector spaces over a field $k . f: V \rightarrow W$ is said to be linear if:

$$
f(\vec{v}+\vec{w})=f(\vec{v})+f(\vec{w}) \quad \forall \vec{V}, \vec{w} \in \vec{V}
$$

$f(c \vec{v})=c f(\vec{v}) \forall \vec{v} \in \vec{V}, c \in F$. Weep or linear trave formation
Example: any $m \times n$ matrix A with coefficients in a field F defines a linear map $T^{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
T^{A}(\vec{x})=A \vec{x} .
$$

matrix -vector multiplication
For instance, if

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right),
$$

then $T^{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by

$$
T^{A}\binom{x_{1}}{x_{3}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
x_{3} & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3} \\
x_{1} \\
x_{1}+5 x_{1}+6 x_{3} \\
x_{1}+8 x_{2}+9 x_{3}
\end{array}\right)
$$

The linearity of T^{A} follows from basic properties of matiix-vector multiplication

Subspaces associated to a linear map $f: V \rightarrow W$:

$$
\begin{aligned}
& \operatorname{im}(f)=\{\vec{w} \in W \mid \vec{\omega}=f(\vec{v}) \text { for some } \vec{v} \in V\} . \\
& \operatorname{ker}(f)=\{\vec{v} \in V \mid f(\vec{v})=0\} .
\end{aligned}
$$

Proof that $i m(f)$ is a subspace:

- If $\vec{w}, \vec{w}^{\prime} \in \operatorname{im}(f)$, then $\vec{w}=f(\vec{v})$ and $\vec{w}=f\left(\vec{v}^{\prime}\right)$ for same $\vec{v}, \overrightarrow{v^{\prime}} \in V$. By linearity $f\left(\vec{v}+\vec{v}^{\prime}\right)=f(\vec{v})+f\left(\vec{v}^{\prime}\right)=\vec{w}+\vec{w}$, so $\vec{w}+\vec{w}^{\prime} \in i m(f)$.
- If $c \in K$, then $f(c \vec{v})=\operatorname{cf}(\vec{v})=c \vec{w}$, so $(\vec{w} \in \operatorname{im}(f)$.

The proof that kerf (f) is a subspace is quite similar. I leave it as an exercise.

Definitions For $f: V \rightarrow W$ a linear map:

1. We call $\operatorname{dim}(i m f)$ the rank of f.
2. We call dim(ker f) the nullity of f.

Rank-Nullity Theorem: For $f: V \rightarrow W$ a linear map between finite-dimensional vector spaces,

$$
\operatorname{dim}(V)=\operatorname{rank}(f)+n u l l i t y(f) .
$$

How does one compute rank(f) or nullity (f) in practice?
We will address this below.

Representing Linear Maps with Matrices
Recall from last lecture: For V a finite dimensional vector space over F with basis $B=\left\{b_{1} \ldots, b_{m}\right\}$ and $\vec{V} \in V$, we can write
$\vec{V}=c_{1} b+\ldots+c_{m} b_{m}$ for unique $c_{1} \ldots, c_{m} \in F$.
We let $[\vec{V}]_{B}=\left(\begin{array}{c}4 \\ \vdots \\ c_{m}\end{array}\right) \in F^{m}$

We call this the representation of \vec{v} in the basis B.

Let $f: V \rightarrow W$ be a linear map of finite dimensional vector spaces.

Given bases $B=\left\{b_{1} \ldots, b_{n}\right\}$ and

$$
B^{\prime}=\left\{b_{1}^{1}, \ldots, b_{m}^{1}\right\}
$$

for V and W respectively, we can represent f via the $m \times n$ matrix

$$
\begin{aligned}
& \text { Hows \#column }
\end{aligned}
$$

In words, the $j^{\text {th }}$ column of $[f]_{B^{\prime}, B}$ is the representation of $f\left(b_{j}\right)$ in the basis B.

The idea behind this is that by linearity, to know the value of f on an arbitrary $\vec{v} \in V$, it's enough to know the value of $f(b)$ for each $b \in B$.

Indeed, if $\vec{v}=c_{1} b_{1}+\cdots c_{n} b_{n}$, then by linearity

$$
f(\vec{v})=f\left(c_{1} b_{1}+\cdots+c_{n} b_{n}\right)=c_{1} f\left(b_{1}\right)+\cdots+c_{n} f\left(b_{n}\right) .
$$

Fact: If S is the set of columns of $[f]_{B^{\prime}, B}$, then

$$
\operatorname{Rank}(f)=\operatorname{dim}\left(S_{\operatorname{pan}}(S)\right)
$$

This can be computed by putting $[f]_{B^{\prime}, B}$ into row echelon form using Gaussion Elimination: The number of pivot rows in the reduced matrix is the rank of f.
Example: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f\binom{x}{y}=\binom{x+y}{x-y}$, ie $f=T^{A}$, where $A=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Let $\left.B=\begin{array}{cc}\left\{\begin{array}{l}1 \\ 0\end{array}\right), & \binom{0}{1} \\ 11 & b_{1} \\ b_{1} & b_{2}\end{array}, \quad B^{\prime}=\left\{\begin{array}{c}\binom{1}{1}\end{array}, \begin{array}{c}1 \\ -1 \\ -1\end{array}\right)\right\}$

$$
\begin{aligned}
& f\binom{1}{0}=\binom{1}{1}=1\binom{1}{1}+0\binom{1}{-1}, \text { so }\left[f\left(b_{1}\right)\right]_{B^{\prime}}=\binom{1}{0} \\
& f\binom{0}{1}=\binom{1}{-1}=0\binom{1}{1}+1(-1) \text {, so }\left[f\left(b_{2}\right)\right]_{B^{\prime}}=\binom{0}{1} . \\
& {[f]_{B_{1} B_{1}}=\left(\left[f\left(b_{1}\right)\right]_{B^{\prime}}\left[\left[f\left(b_{2}\right)\right]_{B^{\prime}}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .\right.}
\end{aligned}
$$

$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is already in reduced echelon form. It has two pivots, so $\operatorname{rank}(f)=2$.
By the rank-nullty th m, nullity $(f)=z-z=0$.

