ANAT 584 Lecture $21 \quad 3 / 9 / 20$
Today: Power Sets as Vector Spaces Simplicial Chain complexes
We've now covered most of the linear algebra we will need to define homology, except quotient spaces.
Instead of covering quotient spaces now, well turn to the linear algebra of chain complexes, and then consider quotient spaces after.
Power Sets as Vector Spaces
For S a set, let $P(S)$ denote the set of all subsets of S. This is called the power set of S, and is sometimes denoted 2^{5}.

Let $S=\{A, B\}, P(S)=\{\varnothing,\{A\},\{B\}, S\}$.
Note: If S is finite, then $P(S)$ has $2^{|s|}$ elements.
Recall that $\operatorname{Fun}\left(S, F_{2}\right)$ denotes the vector space of all functions $f: S \rightarrow F_{2}$.

There is a natural correspondence between $P(S)$ and $\operatorname{Fun}\left(S, F_{2}\right):$

Define a function $\gamma: P(S) \rightarrow \operatorname{Fun}\left(S, F_{2}\right)$ by

$$
\gamma(T)(x)=\left\{\begin{array}{l}
1 \text { if } x \in T \\
0 \text { otherwise }
\end{array}\right.
$$

To keep our notation nice, let's wite $\gamma(T)$ as γ^{T}.

Example: $S=\{A, B, C\} \quad T=\{B, C\}$
$\gamma^{\top}: S \rightarrow F_{2}$ is given by

$$
\gamma^{\top}(x)= \begin{cases}0 & \text { if } x=A \\ 1 & \text { if } x=B \text { or } x=C\end{cases}
$$

Proposition: For all sets $S, \gamma: P(S) \rightarrow F_{u n}\left(S, F_{2}\right)$ is a bijection.

Proof: γ is invertible:

$$
\gamma^{-1}(f)=\{x \in S \mid f(x)=1\}
$$

Hence it's a bijection.

By way of this bijection, we can think of vectors in $\operatorname{Fun}\left(S, F_{2}\right)$ as subsets of S.
Note: $\gamma(\phi)=\overrightarrow{0}$, ie., the comply subset corresponds to the additive identity in $\operatorname{Fu}\left(S, F_{2}\right)$.

How do we understand addition and scaler multiplication from this viewpoint?

Well, in any vector space V over F_{2}, salas multiplication is not to interesting:

$$
\begin{array}{lll}
1 \vec{v}=\vec{V} & \forall \vec{v} \in V & \text { (that's an axiom) } \\
O \vec{v}=\vec{O} & \forall \vec{v} \in V & \text { (this Follows cosily fran the adions). }
\end{array}
$$

Addition is more interesting:
For any sets A and B, let the symmetric difference of A and B be the set

$$
S D(A, B)=A \cup B-A \cap B=\{x \in A \cup B \mid x \notin A \cap B\}
$$

Note: Given any set S, symmetric difference defines a function (i.e., "operation")

$$
S D: P(S) \times P(S) \rightarrow P(S)
$$

Fact: Under the correspondence γ between $P(S)$ and $F_{m}\left(S, F_{2}\right)$, the operator $S D$ on $P(S)$ corresponds to addition in $\operatorname{Fun}\left(S, F_{2}\right)$.
More formally, $\forall T, U \subset S, \gamma^{\top}+\gamma^{U}=\gamma^{S D(T, U)}$
This is easy to prove. Well just illustrate the idea with an example
Example:
Let $S=\{A, B, C\}$

$$
\begin{aligned}
& T=\{B, C\}<S \\
& U=\{A, B\} \subset S .
\end{aligned}
$$

As seen above,

$\gamma^{\top}: S \rightarrow F_{2}$ is given by	$\gamma^{\top}: S \rightarrow F_{2}$ is given by
$\gamma^{\top}(A)=0$	$\gamma^{U}(A)=1$
$\gamma^{\top}(B)=1$	$\gamma^{U}(B)=1$
$\gamma^{\top}(C)=1$	$\gamma^{U}(C)=0$

$\gamma^{\top}+\gamma^{\nu}: S \rightarrow F_{2}$ is given by

$$
\begin{aligned}
& \gamma^{T+U}(A)=0+1=1 \\
& \gamma^{T+U}(B)=1+1=0 \\
& \gamma^{T+U}(C)=1+0=1 \\
& S D(T, U)=\{A, C\} \\
& \gamma^{T}: S \rightarrow F_{2} \text { is given by } \\
& \gamma^{\top}(A)=1 \\
& \gamma^{\top}(B)=0 \\
& \gamma^{\top}(C)=1,
\end{aligned}
$$

so we indeed have that $\gamma^{\top}+\gamma^{U}=\gamma^{S D(T, U)}$.
Formal linear combinations
For any set S and Field F, we define a subspace

$$
\begin{aligned}
& \operatorname{FLC}(S, F)<F_{u n}(S, F) \text { by } \\
& \operatorname{FLC}^{(S, F)}=\left\{F_{\operatorname{F}} \in F_{\text {un }}(S, F) \mid f(x) \neq 0 \text { for only Finitely many } x\right\}
\end{aligned}
$$

