MAT 584 Lecture 22 3/23/20
Today: More about linear maps (isomorphous) Simplicial Chain Complexes

More About Linear Maps
It would have been more natural to cover this before lecture 21 on power sets as vector spaces, but I forgot to.

Recall the following definition from Lee. 20 :
Definition: Let V, W be vector spaces over a field $K . f: V \rightarrow W$ is said to be linear if:

$$
\begin{aligned}
& f(\vec{v}+\vec{w})=f(\vec{v})+f(\vec{w}) \quad \forall \vec{V}, \vec{w} \in \vec{V} \\
& f(c \vec{v})=c f(\vec{v}) \forall \vec{v} \in \vec{V}, c \in K \text {. We call such fa bilinear or linear transformation. }
\end{aligned}
$$

Recall: If $f: V \rightarrow V^{\prime}$ is a linear map between finte-dimensioal vector spaces with B an ordered basis for V and B^{\prime} an ordered basis for V^{\prime}, then we can represent f via a matrix $[f]_{B, B, B}^{\prime}$, whose j dunn represents $f\left(B_{j}\right)$ as a liner combination of the $B!$. [see lecture 20 for details]

Facts: 1. For any vector space $V, I d_{v} ; V \rightarrow V$ is a linear map.
2. If $f: V \rightarrow W$ and $g: W \rightarrow X$ are linear maps, then $g \circ f: W \rightarrow X$ is a lines map.
3. If, A, B, C are bases for V, W, X, respectively, then $[g \circ f]_{C, A}=[g]_{C, B}[f]_{B, A}$.
matrix multiplication.
Recall: If M is an $a+b$ matrix and
N is a $b \times c$ matrix,
The matrix product $M N$ is the axe matrix whose (i, v) th eats is the product of $i \frac{\text { th }}{b}$ row of M with the j th column of N, ie., $(M N)_{i j}=\sum_{k=1}^{b} M_{i k} N_{k j}$.
Isomorphisms
A bijective linear map is called an isomorphism.
Note: If $f: V \rightarrow W$ is an isomorphism, then since it is a bijection it has an inverse $f^{-1}: W \rightarrow V$. It is easily checked that f^{-1} is also linear.

If there exists an isomorphism $f: V \rightarrow W$, we say V and W are isconophhic,

Intivively, isomorphic vector spaces have the same algebraic stivetwre
Examples:

1. For any vector space $V, I d_{V}: V \rightarrow V$ is an isomorphism. 2. Let $V c \mathbb{R}^{2}$ be the line

$$
V=\{(x, y) \mid y=x\}
$$

Then $f: \mathbb{R} \rightarrow V$ given by $f(x)=(x, x)$ is an isomorphism.
3. Let $S=\{1, \ldots, n\}$ and let F be any field. (for concreteness, you may think of the case $F=\mathbb{R}$).

Recall that Fun (S, F) denotes the vector space of all functions from S to F.

Define a function $f: \operatorname{Fun}(S, F) \rightarrow F^{n}$ by

$$
f(\gamma)=(\gamma(1), \gamma(2), \gamma(3), \ldots, \gamma(n)) .
$$

f is an isomorphism.
4. [This example was implicit in lecture 21.] For any set $S, P(S)$ is a vector space over F_{2}, set of all subsets of s
with addition given by symmetric difference.
The function $\gamma: P(S) \rightarrow F_{u n}\left(S, F_{2}\right)$ given by

$$
\gamma^{\top}(x)=\left\{\begin{array}{l}
1 \text { if } x \in T \\
0 \text { otherwise }
\end{array} \text { recall: we write } \gamma^{\top} \text { for } \gamma(T)\right.
$$

considered in Lee 21 is an isomorphism,
Proposition: Two finite-dimensicual veter spaces over the same field are isomorphic if and only if they have the same dimension.

The proof is an easy exercise.
[This does extend easily to infinite-dimensional vector spaces, but I will not bother with that.]

Example: Let $S=\{1, \ldots, n\}$.
Then $\operatorname{Fun}\left(S, F_{2}\right), P(S)$, and F_{2}^{n} all have the same dimension, namely n.

Chain Complexes

- Construction involved in the definition of homology
- Idea: Convert the set-theoretic structure of the simplicial complex into linear algebra.

The construction of simplicial chain complexes (and of homology) requires a choice of field.
To keep things as simple as possible, I will work only with F_{2}. This is by far the most common choice in TIA.

Let X be a finite simplicial complex. Assume the vertex set $V(X)$ is ordered.

For $j \geqslant 0$, let x^{j} denote the set of j simplices.
Let $C_{j}(X)=\operatorname{Pow}\left(X^{j}\right)$, regarded as a vector space over F_{2}.

We call F_{2}. (x) the $j^{\text {th }}$ chain vector space of X. Elements of $c_{j}(x)$ are called chains.
Notation: $\left\{\sigma_{1} . . ., \sigma_{k}\right\} \in C_{j}(x)$ is written as

$$
\sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}
$$

In particular, we write $\{\sigma\} \in C_{j}(X)$ simply as σ. This identifies X with a subset of $C_{j}(X)$,
We write $\left\} \in C_{j}(x)\right.$ as \vec{O}, since it's the aldine identity.
Proposition: X^{j} is a basis for $C_{j}(X)$.
The proof is straightforward.
Example: $X=$

$$
\begin{aligned}
& X^{0}=\{[1],[2],[3],[4]\}, \\
& x^{\prime}=\{[1,2],[1,3],[2,3],[3,4]\} . \\
& x^{2}=\{[1,2,3]\} .
\end{aligned}
$$

$C_{0}(X)$ consists of all possible subsets of $X^{?}$.
in or notation, $[1] \in \ddot{X},{ }^{\prime}[1]+[2]+[3] \in X$, for example.
$X^{0}=\{[1],[2],[3],[4]\}$ is a basis for Co (x).

Next time, well define a sequence of linear maps

$$
\xrightarrow{\delta_{j+1}} c_{j}(x) \xrightarrow{\delta_{j}} c_{j-1}(x) \xrightarrow{\delta_{j-1}} \ldots \xrightarrow{\delta_{2}} C_{1}(x) \xrightarrow{\delta_{1}} C_{0}(x)
$$

This is the chain complex of X.

