ANAT 584 Lee 23 3/25/20
Today: Chain Complexes, Continued

We started the discussion of chain complexes in the last lecture, but didn't get too far. We'll start by reviewing that material.

Chain Complexes
Given a finite abstract simplicial complex X, we construct a sequence of vector spaces over F_{2} and linear maps:

$$
\ldots \xrightarrow{\delta_{3}} C_{2}(X) \xrightarrow{\delta_{2}} C_{1}(x) \xrightarrow{\delta_{1}} C_{0}(x)
$$

The maps δ_{j} are called boundary maps, for reasons that will become dear later.
Techically, this sequence is infinite, but $C_{j}(x)$ is the trivial vector space whenever $j>\operatorname{dim}(x)$, so the interesting part of the sequence is finite.

Recall: X^{J} denotes the set of j-simplices in X.

$$
C_{j}(x)=P\left(x^{j}\right)
$$

$\uparrow_{\text {power set }}=$ set of all subsets
$C_{j}(X)$ is a vector space over F_{2}, with + the symmetric difference operator.

Notation: $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\} \in C_{j}(x)$ is written as $\sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}$.

This is not a crazy convention, since infect $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}=\left\{\sigma_{1}\right\}+\left\{\sigma_{2}\right\}+\cdots+\left\{\sigma_{k}\right\}$.
Were just dropping some curly brackets.
In particular, we write $\{\sigma\} \in C_{j}(X)$ simply as $\sigma_{\text {. }}$
As this notation suggests, we can identify X^{j} with a subset of $C_{j}(X)$, namely the subset of singleton sets.

Fact: X^{j} is a basis for $C_{j}(X)$.
Thus $\operatorname{dim}\left(C_{j}(X)\right)=\left|X^{j}\right|=\# j$-simplices of X.
The proof is an easy exercise.
The additive identity of $C_{j}(x)$ is $\}$. In keeping with ow r broader conventions, this is denoted \vec{O}.

Example $X=\{[1],[2],[1,2]\} .1 \bullet \longrightarrow 2$

$$
C_{0}(x)=\{\overrightarrow{0},[1],[2],[1]+[2]\} \mid C_{1}(x)=\{\overrightarrow{0},[1,2]\} .
$$

$\{3 \overbrace{}^{\prime \prime}\{[]\}\{[2]\}\{[1],[2]\}\{[1,2]\}$ is a basis $\{[1],[2]\}$ is a basis for $C_{0}(X)$ for $C_{1}(X)$. $C_{j}(x)=\{0\}$ for $j \geq 2$. We say that $C_{j}(x)$ is trivial.

Example: $\bar{X}=\{[1],[2],[3],[1,2],[2,3],[1,3],[1,2,3]\}$.

$\{[1],[2],[3]\}$ is a basis for $C_{0}(X)$
$\{[1,2],[2,3],[1,3]\}$ is a basis for $C_{1}(X)$.
$\{[1,2,3]\}$ is a basis for $C_{2}(X)$.
Boundary Maps
Notation: For $\left[x_{0}, \ldots, x_{j}, \ldots, x_{k}\right] \in X^{k}$, let $\left[x_{0}, \ldots, \hat{x}_{j}, \ldots, x_{k}\right] \in X^{k-1}$ be the simplex obtained by removing x_{j}.
This is sometimes called a facet of $\left[x_{0}, \ldots, x_{j}, \ldots, x_{k}\right]$.
Example: In the triangle example above,

$$
\begin{array}{l|l}
{[\hat{1}, 2,3]=[2,3]} & {[\hat{1}, 2]=[2]} \\
{[1, \hat{2}, 3]=[1,3]} & {[1, \hat{2}]=[1]} \\
{[1,2, \hat{3}]=[1,2]} &
\end{array}
$$

For $\sigma=\left[x_{0}, \ldots, x_{j}, \ldots, x_{k}\right] \in X^{k}$ we define the boundary, of σ, clenched $\delta(\sigma)$, by

$$
\begin{aligned}
\delta(\sigma)= & {\left[x_{1}, x_{2}, \ldots, x_{k}\right], \not x_{0} \text { removed } } \\
& +\left[x_{0}, x_{2}, x_{3}, \ldots, x_{k}\right], \leftarrow x_{1} \text { removed } \\
& +\left[x_{0}, x_{1}, x_{3}, x_{4}, \ldots, x_{k}\right] \leftarrow x_{2} \text { removed } \\
& + \\
& \vdots \\
& +\left[x_{0}, x_{1}, \ldots, x_{k-1}\right] \Leftarrow x_{k} \text { removed } \\
= & \sum_{j=0}^{k}\left[x_{0}, \ldots, \hat{x}_{j}, \ldots, x_{k}\right] \in C_{k-1}(X) .
\end{aligned}
$$

Example: For $x=$

$$
\begin{array}{r|l}
\delta([1,2,3])=[2,3]+[1,3]+[1,2], & \delta([1,2])=[2]+[1] . \\
\text { Illustration(in red): } & \text { Illustration (in blue): } \\
2 &
\end{array}
$$

Now, for $j \geqslant 1$, we define $\delta_{j}: C(x) \rightarrow C_{j-1}(x)$ by

$$
\delta_{j}\left(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{k}\right)=\delta\left(\sigma_{1}\right)+\delta_{2}\left(\sigma_{2}\right)+\cdots+\delta\left(\sigma_{k}\right) .
$$

We define $C_{-1}(x)$ to be a trivial vector space wee F_{2} and define $\delta_{0}: C_{0}(x) \rightarrow C_{-1}(x)$ to be the trivial map.
Example: For $x=$

$$
\delta_{2}([1,2,3])=\delta([1,2,3])=[2,3]+[1,3]+[1,2] .
$$

More interestingly,

$$
\begin{aligned}
& \delta_{1}([2,3]+[1,3]+[1,2]) \\
& =[2]+[3]+[1]+[3]+[1]+[2] \\
& =([1]+[1])+([2]+[2])+([3]+[3]) \\
& =\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} .
\end{aligned}
$$

(since the symmetric difference of a set with itself is the empty set.)

Proposition: Each δ_{j} is a linear map.
Thus, if each X^{j} is ordered, we can represent $\delta_{j}: C_{j}(x) \rightarrow C_{j-1}(x)$ with respect to the bases x_{j} and X_{j-1} as a matrix.

Example: Consider $x=$

Consider the following orderings of X^{0} and X^{1}

$$
\begin{aligned}
& x^{0}:[1],[2],[3] \\
& x^{1}:[2,3],[1,3],[1,2]
\end{aligned}
$$

δ_{2} is represented by the 3×1 matrix:

Proposition: For all $j \geqslant 1, \delta_{j-1} \cdot \delta_{j}=0$.
Example: A calculation given above shows that for $x=1_{2}^{3}$
$\delta_{1} \cdot \delta_{2}=0$. In the calculation, we see that the simplices of $\delta_{1} \circ \delta_{2}([1,2,3])$ cancel in pairs.

More generally, the proof of the proposition amounts to the observation That for any $\sigma \in X^{j}$, the simplices of $\delta_{1} \circ \delta_{2}(\sigma)$ cancel in pairs, in the same way.
See the course references for details.

