AMAT 584 Lec 23 3/25/20

Today: Chain Complexes, Continued

We started the discussion of chain complexes in the last lecture, but didn't get too far. We'll start by reviewing that material.

Chain Complexes

Given a finite abstract simplicial complex X, we construct a sequence of vector spaces over Fz and linear maps:

The maps of are $\begin{array}{ccc}
& & & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$

Techically, this sequence is infinite, but G(X) is the trivial vector space whenever j > dim(X), so the interesting part of the sequence is finite.

Recall: X' denotes the set of j-simplices in X.

 $C_j(x) = P(x^j)$

CjW is a vector space over Fz, with + the symmetric difference operator.

Notation:
$$\{\sigma_1, \sigma_2, ..., \sigma_k\} \in C_j(X)$$
 is written as $\sigma_1 + \sigma_2 + \cdots + \sigma_n$.

This is not a crazy convention, since infact
$$\{\sigma_1,...,\sigma_k\}=\{\sigma_1\}+\{\sigma_2\}+\cdots+\{\sigma_k\}$$
. We're just drapping some curly brackets.

In particular, we write $\{\sigma\} \in C_j(X)$ simply as σ .

As this notation suggests, we can identify X' with a subset of Cj(X), namely the subset of singleton sets.

Fact: XV is a basis for Cj(X).

Thus dim(Cj(X))=|XV|=# j-simplices of X.

The proof is an easy exercise.

The additive identity of Cj(X) is {}. In keeping with our broader conventions, this is denoted O.

Example X= {[1], [2], [1,2]}. 1-2

 $(0)(X) = \{0, [1], [2], [1] + [2]\}$ $(1)(X) = \{0, [1, 2]\}$. $\{1, 2\}\}$ is a basis for (0)(X) for (1)(X). $(1)(X) = \{0, [1, 2]\}$. We say that (1)(X) is trivial.

Example: X={[1],[2],[3],[1,2],[2,3],[1,3],[1,2,3]}.

 $\{[1], [2], [3]\}$ is a basis for $C_0(X)$ $\{[1,2], [2,3], [1,3]\}$ is a basis for $C_1(X)$.

Boundary Maps

Notation: For [xo,...,xj,...,xk] \(\) \(

Example: In the triangle example above,

$$\begin{bmatrix} \hat{1}, 2, 3 \end{bmatrix} = \begin{bmatrix} 2, 3 \end{bmatrix} \quad \begin{bmatrix} \hat{1}, 2 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$$

$$\begin{bmatrix} 1, \hat{2}, 3 \end{bmatrix} = \begin{bmatrix} 1, \hat{2} \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\begin{bmatrix} 1, 2, \hat{3} \end{bmatrix} = \begin{bmatrix} 1, 2 \end{bmatrix}$$

For
$$\sigma = [x_0, ..., x_j, ..., x_k] \in X^k$$
 we define the boundary of σ , denoted $\sigma(\sigma)$, by

$$\int (\sigma) = \begin{bmatrix} x_1, x_2, \dots, x_k \end{bmatrix}, \quad x_0 \text{ removed} \\
+ \begin{bmatrix} x_0, x_1, x_3, \dots, x_k \end{bmatrix}, \quad x_1 \text{ removed} \\
+ \begin{bmatrix} x_0, x_1, x_3, x_4, \dots, x_k \end{bmatrix} \leftarrow x_2 \text{ removed} \\
+ \begin{bmatrix} x_0, x_1, \dots, x_{k-1} \end{bmatrix} \leftarrow x_k \text{ removed} \\
= \sum_{i=0}^{k} [x_0, \dots, x_i], \quad x_k \end{bmatrix} \in (k-1)$$

Example: For
$$X=$$
 1

$$S([1,2,3]) = [2,3] + [1,3] + [1,2].$$

$$S([1,2]) = [2] + [1].$$

$$Illustration (in red):$$

$$Illustration (in blue):$$

Naw, for
$$j \ge 1$$
, we define $\delta_j : C(X) \rightarrow C_{j-1}(X)$
by

$$G_{j}(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{k})=G(\sigma_{1})+G_{2}(\sigma_{2})+\cdots+G(\sigma_{k})$$

We define (-,(X)) to be a trivial vector space over F_z and define $\mathcal{E}_0: C_0(X) \to (-,(X))$ to be the trivial map.

Example: For
$$\chi = \frac{3}{1}$$

More interestingly,

$$=([1]+[1])+([2]+[2])+([3]+[3])$$

(since the symmetric difference of a set with itself is the empty set.)

Proposition: For all j>1, Sj-1. Sj=0.
Example: A calculation given above shows that for $\chi = \frac{3}{1}$
$\sigma_1 \circ \sigma_2 = 0$. In the calculation, we see that the simplices of $\sigma_1 \circ \sigma_2([1,2,3])$ concel in pairs
More generally, the proof of the proposition amounts to the observation that for any $\sigma \in X^i$, the simplices of $S_1 \circ S_2(\sigma)$ cancel in pairs, in the same way.
See the course references for details.