AMAT 584 Lecture 24, 3/27/20

Today: Chain Complexes, continued Quotient Vector Spaces

To start, let's review the definition of a chain complex:

For X a finite simplicial complex, the <u>chain complex</u> of X is the sequence of vector spaces and linear maps $S_4 \subset (X) \xrightarrow{S_3} \subset (X) \xrightarrow{S_2} \subset (X) \xrightarrow{S_2} \subset (X) \xrightarrow{S_4} \subset (X) \xrightarrow{S_3} \subset (X) \xrightarrow{S_4} \subset (X) \xrightarrow$

Where $C_j(X) = P(X^j)$, for X^j the set of j-simplices of X, power set, regarded as vector space over F_2 .

 $\mathcal{S}: X^{j} \to C_{j-1}(X), \mathcal{S}([x_0, ..., x_j]) = \sum_{k=0}^{\infty} [x_0, ..., x_{k}, ..., x_j]$ $\mathcal{S}: (\sigma_1 + \cdots + \sigma_k) = \mathcal{S}(\sigma_1) + \mathcal{S}(\sigma_2) + \cdots + \mathcal{S}(\sigma_n).$

Recall: X' is (identified with) a basis for Cj(X), called the standard basis.

⇒ dim (Cj(x)) = (xi).

Since each Cj(X) is finite dimensional, if	we order
Ci(X) and Ci-1(X), then we can represent of via	a matrix
with coefficients in E.	
Example: Consider X= 3	
Consider the following orderings of X° and X°: [1] [2] [3]	ud X ¹
$X^{2}: [2,3], [3]$ $X^{1}: [2,3], [1,2]$	
of z is represented by the 3×1 matrix:	
237/1	I've lubeled the rows
1,3] [1]	and collumns
	of the
Si is represented by the 3×3 matrix:	matrices
[2,3] [1,3] [1,2]	by the
1]/0 1 1	corresponding basis element
$\begin{bmatrix} 2 & 1 & 0 & 1 \\ 3 & 1 & 1 & 0 \end{bmatrix}$	ass dement
Note that $\delta_1 \circ \delta_2 = \begin{pmatrix} 0+ + \\ +0+ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ we have	senerally, ave the
TORON TORON	

Apposition: 4 > 0,

$$G_{j} \circ G_{j+1} : C_{j+1}(x) \rightarrow C_{j-1}(x) = 0$$

ie, is the constant map to 0.

Example: For X as above,

Note that $S_1 \circ S_2([1,2,3])$ is δ because the δ simplices in the sum * cancel in pairs.

The proof of the proposition amounts to the observation that this phenomena generalizes to any simplex in any simplicial complex.

Cycles and Boundaries

For i> O

 $\ker(\delta_j) \subset C_j(X)$ is called the cycle subspace, and is denoted $Z_j(X)$. Elements of $Z_j(X)$ are called j-cycles.

im (Ji+1) < (j(X) is called the image subspace, and is denoted Bj(X). Elements of Bj(X) are alled j-boundaries.

Proposition: Bj(x) < Zj(x).

Proof: If $z \in B_j(x) = im(J_{j+1})$ then $z = J_{j+1}(y)$ for some $y \in C_{j+1}(x)$. Then $J_j(z) = J_j(J_{j+1}(y)) = \overline{J}_j$, so $z \in \ker(J_j) = Z_j(x)$.

As the names "cycles" and "boundaries" suggest, these objects have a nice geometric interpretation:

It can be checked that

$$Z_{1}(X) = \{\vec{0}, \\ [1,2] + [1,3] + [2,3], \\ [2,3] + [3,4] + [2,4], \\ [1,2] + [2,4] + [3,4] + [1,3]. \}$$

For example,
$$\delta_{1}([1,2]+[2,4]+[3,4]+[1,3])=$$
 $[1]+[2]+[2]+[4]+[3]+[4]+[1]+[3]$
 $=([1]+[1])+([2]+[2])+([3]+[3])+([4]+[4])$
 $=\bar{O}$.

It is easy to see that
$$B_1(X) = \{0, [1,2] + [1,3] + [2,3]\}$$
.
Indeed, $C_2(X) = \{0, [1,2,3]\}$.

Example: Cycles needn't form a connected subgraph: [1,2]+[2,3]+[1,3]+[4,5]+[5,6]+[4,6]&B(X). Example: Consider the 3-simplex $[1,2,3]+[2,3,4]+[1,2,4]+[1,3,4]\in Z_2(x)$ Sum of all the Z-simplices, i.e. hollow tetrahedron.