ANAT 584 Lecture 24, 3/27/20
Today: Chain complexes, continued Quotient Vector Spaces

To start, let's review the definition of a chain complex:

For X a finite simplicial complex, the chain complex of X is the sequence of vector spaces and linear maps $\ldots \xrightarrow{\delta_{4}} C_{3}(X) \xrightarrow{\delta_{3}} C_{2}(X) \xrightarrow{\delta_{2}} C_{1}(X) \xrightarrow{\delta_{1}} C_{0}(X) \xrightarrow{\delta_{0}} O$
Where $C_{j}(X)=P\left(X^{j}\right)$, for X^{j} the set of j-simplices of X, parer set, regarded as vector space over F_{2}.

$$
\begin{aligned}
& \delta: x^{j} \rightarrow C_{j-1}(x), \delta\left(\left[x_{0}, \ldots, x_{j}\right]\right)=\sum_{k=0}^{v}\left[x_{0}, \ldots, \hat{x}_{k}, \ldots, x_{j}\right] \\
& \delta_{j}\left(\sigma_{1}+\cdots+\sigma_{k}\right)=\delta\left(\sigma_{1}\right)+\delta\left(\sigma_{2}\right)+\cdots+\delta\left(\sigma_{n}\right) .
\end{aligned}
$$

Recall: X^{j} is (identified with) a basis for $C_{j}(X)$, called the stanclard basis.

$$
\Rightarrow \quad \operatorname{dim}\left(C_{j}(x)\right)=\left|x^{j}\right| .
$$

Since each $C_{j}(X)$ is finite dimensional, if we oder $C_{j}(X)$ and $C_{j-}(X)$, then we can represent δ_{j} via a matix with coefficients in F_{2}.

Example: Consider

Consider the following orderings of X^{0} and X^{1} $x^{0}:[1],[2],[3]$

$$
x^{1}:[2,3],[1,3],[1,2]
$$

δ_{2} is represented by the 3×1 matrix:

Note that $\delta_{1} \circ \delta_{2}=\left(\begin{array}{l}0+1+1 \\ 1+0+1 \\ 1+1+0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \begin{aligned} & \text { More severally, } \\ & \text { we have the } \\ & \text { following }\end{aligned}$

Poposition: $\forall j \geqslant 0$,

$$
\delta_{j} \circ \delta_{j+1}: C_{j+1}(x) \rightarrow C_{j-1}(x)=0,
$$

ie., is the constant map to $\overrightarrow{0}$.
Example: For X as above,

$$
\begin{aligned}
\delta_{1} \circ \delta_{2}([1,2,3]) & =\delta_{1}(\delta([1,2,3])) \\
& =\delta_{1}([2,3]+[1,3]+[1,2]) \\
& =\delta(2,3)+\delta(1,3)+\delta(1,2) \\
& =[2]+[3]+[1]+[3]+[1]+[2] * \\
& =[[1]+[1])+([2]+[2])+([3]+[3]) \\
& =\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} .
\end{aligned}
$$

Note that $\delta_{1} \circ \delta_{2}([1,2,3])$ is \vec{O} because the \vec{O} simplices in the sum $*$ cancel in pairs.
The proof of the proposition amounts to the observation that this phenomena generalizes to amy simplex in amy simplicial complex.

Cycles and Boundaries
For $j \geq 0$,
$\operatorname{ker}\left(\delta_{j}\right) \subset C_{j}(x)$ is called the sadesbospace, and is denoted $Z_{j}(X)$. Elements of $Z_{j}(X)$ are called j-cycles.
$\operatorname{im}\left(\delta_{j+1}\right) \subset C_{j}(x)$ is called the image subspace, and is denoted $B_{j}(X)$. Elements of $B_{j}(X)$ are Gilled j-boundries.
Proposition: $B_{j}(x)<Z_{j}(x)$.
Proof: If $z \in B_{j}(x)=i m\left(\delta_{j+1}\right)$ then $z=\delta_{j+1}(y)$ for some $y \in C_{j+1}(x)$. Then $\delta_{j}(z)=\delta_{j}\left(\delta_{j+1}(y)\right)=\overrightarrow{0}$, so $z \in \operatorname{ker}\left(\delta_{j}\right)=Z_{j}(x)$.

As the names "cycles" and "boundaries" suggest, these objects have a nice geometric inter pretation:
Example: Let $x=$

$Z_{0}(x)=C_{0}(x)$, since $\delta_{0}=0$.

It can be checked that

$$
\begin{aligned}
& Z_{1}(x)=\left\{\begin{array}{l}
\overrightarrow{0}, \\
1,2
\end{array}\right. \\
& {[1,2]+[1,3]+[2,3] \text {, }} \\
& {[2,3]+[3,4]+[2,4],} \\
& [1,2]+[2,4]+[3,4]+[1,3] .\}
\end{aligned}
$$

For example, $\delta_{1}([1,2]+[2,4]+[3,4]+[1,3])=$

$$
\begin{aligned}
& {[1]+[2]+[2]+[4]+[3]+[4]+[1]+[3] } \\
= & ([1]+[1])+[2]+[2])+[3]+[3])+([4]+[4]) \\
= & 0 .
\end{aligned}
$$

Examples of 1-chans which are not 1-cycles include:

$$
\begin{aligned}
& {[1,3]+[3,4]+[2,4]} \\
& {[1,3]+[3,4]+[2,3]} \\
& {[1,3]+[2,4]}
\end{aligned}
$$

It is easy to see that $B_{1}(X)=\{\overrightarrow{0},[1,2]+[1,3]+[2,3]\}$.
Indeed, $C_{2}(x)=\{\overrightarrow{0},[1,2,3]\}$.

$$
\delta_{2}(\overrightarrow{0})=\vec{O} \text { and } \delta_{2}([1,2,3])=[1,2]+[1,3]+[2,3] .
$$

For $j \geqslant 2, Z_{j}(x)=B_{2}(x)=\{0\} . \begin{aligned} & \text { boundary of a } \\ & \text { triangle! }\end{aligned}$

Example: Cycles needn't form a connected subgraph:

$$
[1,2]+[2,3]+[1,3]+[4,5]+[5,6]+[4,6] \in B_{1}(X) .
$$

Example: Consider the 3 -simplex

$$
\underbrace{[1,2,3]+[2,3,4]+[1,2,4]+[1,3,4]} \in Z_{2}(x)
$$

Sum of all the 2-simplices, ie. hollow tetrahedron.

