ANAT 584 Lee 25
Today: More examples of cycles + boundaries Quotient Spaces

Review of Cycles and Boundaries
For $j \geqslant 0$,
$\operatorname{ker}\left(\delta_{j}\right)<C_{j}(x)$ is called the sade subspace, and is denoted $Z_{j}(X)$. Elements of $Z_{j}(X)$ are called j-cycles. $\operatorname{im}\left(\delta_{j+1}\right) \subset C_{j}(x)$ is called the image subspace, and is denoted $B_{j}(X)$. Elements of $B_{j}(X)$ are ailed j-boundaries.

Proposition: $B_{j}(x)<Z_{j}(x) \forall j \geqslant 0$.
Example from last lecture:
Let $x=3_{2}^{3}$

$$
Z_{0}(x)=\operatorname{kec}\left(\delta_{0}\right)=L_{0}(x)
$$

because $\delta_{0}: C_{0}(X) \rightarrow 0$ is 0 .

What is $B_{0}(x)=i m\left(\delta_{1}\right)$?
Fact: For any linear map $f: V \rightarrow W$ and set $S<V$, we have $S_{\operatorname{pan}}(f(s))=f\left(S_{\operatorname{pan}}(s)\right)$.
recall: for $g: A \rightarrow B$ any function and $(C A$, $g(C)$ is defined by $g(C)=\{y \in B \mid y=g(x)$ for some $x \in A\}$.]

$$
B_{0}(x)=\operatorname{im}\left(\delta_{1}\right)=S_{0}\left(C_{1}(x)\right)=\delta_{0}\left(\operatorname{SPan}\left(X^{1}\right)\right)=\operatorname{Span}\left(\delta_{0}\left(X^{1}\right)\right) \text {. }
$$

$$
\delta_{0}\left(x^{1}\right)=\{[1]+[2],[1]+[3],[2]+[3],[3]+[4],[2]+[4]\} .
$$

It's easy to check using linear algebra (or by bise fore) that $\{[1]+[2],[2]+[3],[3]+[4]\}$ is a loris for $\operatorname{in}\left(\delta_{1}\right)=S_{\operatorname{pan}}\left(\delta_{0}\left(x^{1}\right)\right)$.
Note, egg., that $[1]+[3]=([1]+[2])+([2]+[3])$

$$
[2]+[4]=([2]+[3])+([3]+[4]) .
$$

Thus, $\operatorname{dim}\left(B_{0}(x)\right)=3$.

We saw last time that

$$
\begin{aligned}
& Z_{1}(x)=\left\{z_{1}\right.=\overrightarrow{0}, \\
& z_{2}=[1,2]+[1,3]+[2,3], \\
& z_{3} \\
&=[2,3]+[3,4]+[2,4], \\
&\left.z_{1}=[1,2]+[2,4]+[3,4]+[1,3] .\right\}
\end{aligned}
$$

It's easy to check that $\left\{z_{2}, z_{3}\right\}$ is a basis for $Z_{1}(x)$.
Note, egg., that $z_{4}=z_{2}+z_{3}$.
As the above example suggests," closed bops" in the 1-sceleton are I cycles.
To make this more precise, recall ar TOA I definition of cycles in a graph (Lecture 21 from Fall 2019). Any such syce is a 1-cycle. Bot not all 1-cycles are cycles in that sense.

Example: Cycles needn't form a connected subgraph:

$$
[1,2]+[2,3]+[1,3]+[4,5]+[5,6]+[4,6] \in B_{1}(X) .
$$

Example:

is also a 1 'cyde.

Example: Consider the 3 -simplex

$$
[1,2,3]+[2,3,4]+[1,2,4]+[1,3,4] \in Z_{2}(x)
$$

Sum of all the 2 -simplices, ie. hollow tetrahedron.

The Idea of Homology
The (initial) goal: For fixed $j \geqslant 0$, cant the j-dim holes in a simplicial complex X.

Example

According to common usage of the word "hole," X has two holes.

These are holes you can "see through," so should be 1-D holes, according to things we said earlier this semester.

How do we make precise the idea that X has two 1-D holes?
 $Z_{j}(x)$.

This is no good.
Here $Z_{1}(x)$ has 4 elements, but two holes. One of those cements is 0 , which clearly doesn't correspond to a hole.
But even if we consider only nan-zero elements of $Z_{1}(X)$, we get a count of 3 , which is still too many.
Intuitively, the issue is that the cycle $z_{y}=[1,2]+[2,4]+[3,4]+[1,3]$ is an "extra hole."

If we've alreacly canted $z_{2}=[1,2]+[2,3]+[1,3]$ and $z=[2,3]+[3,4]+[2,4]$.
we don't want to also court $\overline{\boldsymbol{z}}_{4}$.
The solution lies in the observation that there is an algebraic relation between these cycles. Indeed, we've seen that $z_{4}=z_{2}+z_{3}$.

This motivates the following:
Naive idea 2: \#j-D holes in $X=\operatorname{dim}\left(Z_{j}(X)\right)$.
For graphs, $\operatorname{dim}\left(Z_{1}(x)\right)$ is indeed a "correct" way to count the $\#$ of holes.

However, for general simplicial comploees, this idea is problematic:

For example, consider

X has one 1-D hole but $\operatorname{dim}\left(Z_{1}(X)\right)=2$.

The problem, intuitively, is that the cycle

$$
z_{3}=[2,3]+[3,4]+[2,4]
$$

is filled in by a triangle.
That is, $z_{3} \in B_{1}(x)=\operatorname{im}\left(\delta_{2}\right)$. So it does not contribute a hole.

To account for this kind of thing, we will to modify the vector space $Z_{1}(X)$ to "remove" the cydes which are boundaries.

To do this, we will use quotient spaces, to be introduced next time.

