AMAT 584 Lecture 27 4/3/2020

Today: Quotient Spaces and Homology, Continued - Examples

- Induced maps on quotient spaces / homology.

Review

Let V be a vector space over F, and W = V a subspace. We define V/W (also a vector space over F), as follows:

Let n be the equivalence relation on V given by vnv' iff $v-v' \in W$.

As a set, V/W is the set of equivalences classes of ~.

Addition on WW is defined by [v]+[w] = [v+w]
Scalar multiplication on WW is defined by c[v] = [cv].
Additive identity in WW is [0] (=[w] for any weW.)

Fact: $\forall v \in V$, $[v] = \{v \neq w \mid w \in W\}$.

Thus, [v] is often denoted $V \neq W$.

Note that $\eth + W = W$. V + W is called a coset.

this part is not review!

Homology For X a finite simplicial complex, we define

Hj(X)= Zj(X)/Bj(X).

End of review

Proposition: Suppose V is finite dimensional, WCV is a subspace with dim(W)=m and dim(V)=n, and Eu,..., und is a basis for V such that Eu,..., umd a basis for Wo. Then E[Vm+1], [Vm+z],...,[Vn] is a basis for V/W. In particular, dim(V/W) = dim(V)-dim(W).

Phrased more colloquially: Extend a basis for W to a basis for V.
The casets of the elements in the extension form a basis for V/W.

Let's revisit the example from last time:

As before, let's write $Z = Z_1(X)$ $B = B_1(X)$

$$Z=\{\delta,$$
 $z_1=[1,2]+[2,3]+[1,3]$
 $z_2=[2,3]+[3,4]+[2,4]$
 $z_3=[1,2]+[2,4]+[3,4]+[1,3]\}.$
 $\{z_1,z_2\}$ is a basis for Z .

 $B=\{\delta,z_1\}$. $\{z_1\}$ is a basis for B .

We saw that as a set, $\{t_1(X)=Z/B=\{\delta,z_1\},\{z_2,z_3\}\}$
 $=\{B,z_2+B\}$. a cample addition to the proposition $\{[z_1]\}$ is a basis for $\{t_1(X)\}$ and this is easy to see directly. This moles good into some, as z_2 is a hole. It's easy to check that $\{t_1(X)\} \cong \{z_2\}$.

Let's look at on example of addition in $\{t_1(X)\}$.

 $\{z_1\}+\{z_2\}=\{z_1+z_2\}=\{z_3\}=\{z_2\}$
wheather from previous fectores.

In fact, this is the answer we expected, because $\{z_1\}=\{\delta\}=B=\text{additive identity in }Z/B$.

Let's look at Ho(X) as well:

We explained in an earlier lecture that

$$B_0(x)$$
 has basis $\sum_{k=1}^{\infty} \{ [2], [2] + [3], [3] + [4] \}$
 $Z_0(x) = C_0(x)$.

(o(x) has standard basis {[1],[2],[3],[4]}, but I is not a subset of this.

It can easily be checked, however, that

$$\{[1], [1]+[2], [2]+[3], [3]+[4]\}$$
 is a basis for $Z_{3}(\lambda)$.

Es is dearly a subset of this.

So by the proposition,
$$\{[1] + B_0\} = \{[1]\}$$
 is a basis for $\{b(x) = Z_0(x)/B_0(x)\}$.

Interpretation: |X| has a single path component contains vertex 1.

Proposition: For any finite simplicial complex X, dim (Holx)=

path components of |X| = # components of 1-skeleton of X.

Moreover, if X has k components $X_1, ..., X_k$ and for each if $\{1, ..., k\}$, we choose a vertex $y_i \in X$, then $\{[y_1], [y_2], ..., [y_k]\}$ is a basis for $\{[y_k], [y_k]\}$.

(But this is not the only for a basis for Ho(X) can take.)

Induced maps on quotients
The following idea gives us the persistent part of persistent homology!

troposition'

Let f:V > V' be a linear map, and let WcV, W'cV' be

subspaces such that f(W) c W', (i.e., f(w) e W' for all we W).

Then f induces a linear map fx: V/W -> V/W, given by

fx([v])=[f(v)].

If the need to check that fx is well defined, i.e., if [V] = [W] then $f_*([V]) = f_*([W])$.

If [v]=[w] then $v \sim w$, i.e., $v-w \in W$. $\Rightarrow f(v-w)=f(v)-f(w)\in W'$, $\Rightarrow f(v) \sim f(w)$ $\Rightarrow [f(v)]=[f(w)] \Rightarrow f_*([v]=f_*([w])$. So f_* is well defined.

The linearity of Fx follows readily from the linearity of f. I'll leave the details as an easy exercise.

Corol	lary:	A sim	plicial	Μαρ	f:X>	Y ind	væs a j>,0	
lineur	T Map	H; (F): H; ()	()→ 'Hj	(X) £	v each	120	•
(We	e some	times di	enote H	(f) a	s (k).	•	J	
				V	, Je			
This	requires	Some	explana	tion w	which we	ill give	next tim	ne.
			•	7		U		