AMAT 584 Lecture 28, 4/6/20 Today: Functoriality of homology Homology is what's called a fundor. Ladjective form: fundoviall I won't define functors in general, because that would take too long. I'll just explain what this means for handogy. Functoriality of homology means that (for fixed $j \ge 0$) 1) for any simplicial complex X, we get a vector space $H_j(X)$ 2) for any simplicial map $f: X \to Y$ we get a linear map $H_{j}(f): H_{j}(x) \rightarrow H_{j}(Y)$ $H_{j}(f)$ is also denoted as f_{*} such that Hi(Idx) = Id+(x) Y simplicial complexes X. houndayy takes maps to identity maps and Hi(fog)=Hi(f)oHi(g) + X > Y > Z. hamology respects composition of maps

So far, we've focused only on 1), but 2) is the key to defining persistent homology

The induced maps Hj (f) relate the holes in X and Y.

In this class, we'll primorily be interested in maps on homology induced by indusions of simplicial complexes.

loose interpretation: For f: X -> Y an inclusion of simplicial complexes, rank (Hj(f)) is the number of j-D holes in X that remain holes in Y.

dim(H1(X)) = dim(H1(Y))=1, but rank(H1(f))=0.
This expresses the fact that the hole in X closes up in Y.

Ctricingle-shaped tube, with both and tricingles not included, w/ another triangle glued on at a corner

The cycles [1,2]+[2,3]+[1,3] and
[4,5]+[5,6]+[4,6]
are not equivalent in HI(X), but become equivalent
in H ₁ (Y): Their sum is the boundary of t ₁ +t ₂ +··· t ₆ , where t,, t ₆ denote the
titizt to the where t,, to denote the
2-simplices of Y.
The fact that rank (Hr(f)) = 1 expresses this
The fact that rank $(H_1(f))=1$ expresses this "merging" of homology classes.
Example 1
2
X
dim(Ho(X))=Z
dim(Ha(Y))=2
rank(Ho(f))=1. — This expresses the "merging" of the homology classes [1] and [2] in Ho(Y).
homology classes [1] and [2] in Ho(Y).
NC 345 1 3 1 al assa s las dans
Definition of induced maps on homology
A simplicial map f: X -> Y induces a map
A simplicial map $f:X \rightarrow Y$ induces a map $f_{\#}:G(X)\rightarrow G(Y)$
iff ららっ こっし

First, we define $f \neq 0$ on $X^{J} \in C_{j}(X)$, i.e. on chains with one term:

Note that when f is an inclusion, the first condition always holds.

Then we define
$$f_{\sharp}$$
 on arbitrary chains in $C_{j}(x)$ by $f_{\sharp}(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{k})=f_{\sharp}(\sigma_{1})+f(\sigma_{2})+\cdots+f(\sigma_{k}).$

Proposition: Each square in the following diagram commites:

i.e., for each j, fof = f# & Sj: (j(X) -> (j-1(Y))
The proof is straightforward.

$$\text{Hod}(i)$$
 If $z \in Z_j(x)$, then $S_j(z) = 0$. $S_j \circ f_\#(z) = f_\# \circ S_j(\overline{z}) = f_\#(\overline{0})$

(The last equality uses the fact that $g(\delta) = \bar{\partial}$ for any linear map.)

(ii) If $z \in B_j(X)$ then $z = f_{j+1}(y)$ for some $y \in C_{j+1}(X)$. $f_{\#}(z) = f_{\#}(\delta_{j+1}(y)) = \delta_{j+1}(f_{\#}(y))$, so $f_{\#}(z) \in B_j(Y)$.

Thus for restricts to a map $f_{\#}: Z_{j}(X) \rightarrow Z_{j}(Y)$ such that $f_{\#}(B_{j}(X)) \subset B_{j}(Y)$.

Now recall the following general result about quotient spaces from last time:

Proposition!

Let $g:V \to V'$ be a linear map, and let $W \subset V$, $W' \subset V'$ be subspaces such that $f(W) \subset W'$, (i.e., $f(W) \in W'$ for all $W \in W$). Then g induces a linear map $g_*:V/W \to V/W$, given by $g_*([v])=[g(v)]$.

If [v]=[w] then g*([v])=g*([w]).

If [v]=[w] then $v \sim w$, i.e., $v-w \in W$. $\Rightarrow g(v-w)=g(v)-g(w)\in W', \Rightarrow g(v)\sim g(w)$ $\Rightarrow [g(v)]=[g(w)]\Rightarrow g_*([v])=g_*([w])$. So g_* is well defined.

The linearity of 9x follows reachily from the linearity of 9.

I'll leave the details as an easy exercise.

Applying the proposition with $V = Z_{j}(x) \qquad V' = Z_{j}(Y)$ $W = B_{j}(x) \qquad W' = B_{j}(Y)$ $Q = f_{\#}: Z_{j}(x) \rightarrow Z_{j}(Y)$ Gives us the induced map on homology $H_j(f): H_j(X) \rightarrow H_j(Y)$. The check that this satisfies the functoriality conditions is straightforward.