ANAT 584 lecture 2, 1/24/20
Simplicial Complexes references: Edelsbrunner/Harer,

- Generalizations of graphs

Illustrations

- Munkres, Elements of
- Algebraic Topology
- Blumberg/Rabadan

Simplices are certain simple subsets of \mathbb{R}^{n}.
A O-simplex is a point \cdot
A 1-simplex is a line segment
A 2 -simplex is a triangle Δ
A 3-simplex is a solid tetrahedron
To give the precise definition of a simplex, we will need a few preliminary notions.

First, to motivate what follows, let's consider the following simple question:
Question: Given $\vec{x} \neq \vec{y} \in \mathbb{R}^{n}$, how do we describe the line segment L connecting \vec{x} and \vec{y} as a set?

Answer:

$$
\begin{aligned}
L & =\{\vec{x}+c(\vec{y}-\vec{x}) \mid c \in[0,1]\} \\
& =\{c \vec{y}+(1-c) \vec{x} \mid c \in[0,1]\} .
\end{aligned}
$$

A subset $S \subset \mathbb{R}^{n}$ is called a linear slespese if it is the solution set to a linear equation $A \vec{x}=0$ (A is a matrix.)

Geometrically, a linear subspace is flat (doesn't curve), and passes through the origin.

An affine subspace of \mathbb{C}^{n} is the solution set to an equation $A \vec{x}=b \quad(A$ is a matix, b is a vector).

Geometrically, has the same shape as a linear subspace, but needn't pass through the origin.

That is, an affine subspace is a translation of a linear subspace.

Def: Aset X of k points in \mathbb{R}^{n} is said to be in general position if X does not lie on any $(k-2)$-dimensional affine subspace.

For example, 3 points in \mathbb{R}^{3} are in general position if they dou't all line on a single line

General Position

Not in general position

Far points in \mathbb{R}^{3} are in general position if they don't lie on a plane.

Note: If k points in \mathbb{R}^{n} are in general position, then $n>k-2$.

Not in general position

For $X=\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\} \subset \mathbb{R}^{n}$, the convex hull of X, is the set

$$
\operatorname{Conv}(x)=\left\{c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}+\cdots+c_{n} \vec{x}_{n} \mid \text { each } c_{i} \geqslant 0 \text { and } \sum_{i=1}^{n} c_{i}=1\right\} \text {. }
$$

- The convex hill of a single point is the singleton set containg only that point.
- The convex hull of two points is the line segment connecting them.
- The convex hull of three points in general position is the triangle with these points as vertices.
- The convex hull of four points in general position is a solid tetrahedron with these points as vertices.

Definition: A $(k-)$ simplex is the convex hull of a set of $k+1$ points in general position.

If x_{0}, \ldots, x_{k} are in general position, we write the associated simplex as $\left[x_{0}, \ldots, x_{k}\right]$.
Ill sometimes call this the simplex spared by $\left\{x_{0}, \ldots, x_{k}\right\} x_{1} \cdot<\left[x_{2}, x_{1}, x_{2}\right]$

Definition: A face of a simplex $\left[x_{0}, \ldots x_{k}\right]$ is the simplex spanned by a non-empty subset of $\left\{x_{1}, \ldots, x_{t}\right\}$.

The faces of $[A, B, C]$ are:

$$
\begin{aligned}
& {[A],[B],[C],} \\
& {[A, B],[B, C],[A, C],}
\end{aligned}
$$

$$
[A, B, C] \text {. }
$$

Definition: A (geocentric) simplical complex is a set S of simplices in \mathbb{R}^{n} (for some fixed n) such that

1. each face of a simplex in S is contained in S
2. the intersection of two simplices in X is a face of each of them (if non empty).

Let $A, B, S D \in \mathbb{R}^{2}$ be as shown

This illustrates the simplicial complex

$$
\{[A],[B],[C],[D],[A, B],[A, C],[B, C],[A, D],[A, B, C]\} \text {. }
$$

Example: For $A, B \in \mathbb{R}^{2}$ as shown,
 $\{[A],[A B]\}$ is not a simplical complex: property 1 is violated.

Example: For $A, B, C, D \in \mathbb{R}^{2}$ as shown,
 $\{[A],[B],[C],[D],[A, D],[B, C]\}$ is not a simplial complex: Property 2 . is violated.

Definition: For S a simplicial complex, we call the Union of the simplices in S the geometric realization of S, and denote this $|S|$.

Abstract Simplicial Complexes
Motivation: It turns out that up to homeomorphism, $|S|$ doesn't depend on the position of the O-simplices of S.

Example:

$|S| \cong\left|S^{\prime}\right|$. (Recall that \cong means" is hameomaphict ") .
Let's make this precise:
Proposition: Let S and S^{\prime} be
simplicial complexes, and suppose there is a bijection f from the O-simplices of S to the $\mathrm{O}^{- \text {-implies of } \mathrm{S}^{\prime} \text { such that }}$

$$
\left[x_{0}, \ldots, x_{k}\right] \in S \text { iff }\left[f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right] \in S!
$$

Then $|S| \cong\left|S^{\prime}\right|$.
Def: an abtacat simplicial complex on a set S is a collection X of nou-empty finite subsets such that if $\sigma \in X$ and $\phi \neq \tau^{<} \sigma$, then $\tau \in S$.
The subsets of size $(k+1)$ are called k-simplices of X.

The simplex $\left\{a_{1}, \ldots, a_{k}\right\}$ is witter $\left[a_{0}, \ldots, a_{k}\right]$.
\qquad

