Today: Some computations

Example: Let $S=\{a, b, c, d\}$
The power set $P(S)$ is a vector space with ordered basis S. (That is, $\{\{a\},\{b\},\{c\},\{d\}\}$ is a basis for $P(S)$, but we identify this subset of $P(s)$ with S.)
What is $[\{b, c\}]_{S} \in F_{2}^{4}$, the column vector representation of $\{b, c\}$ with respect to this ordered basis?

$$
\begin{aligned}
\{b, c\} & =\{b\} \cup\{c\}=\{b\}+\{c\} \\
& =b+c \\
& =0 a+1 b+1 c+0 d .
\end{aligned}
$$

So $[\{b, c\}]_{S}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$.
Example:

Problem: a. Represent each non-2ero map $\delta_{j}: C_{j}(x) \rightarrow C_{j-1}(x)$ as a matrix with respect to the standard bases for
$C_{j}(X)$ and $C_{j-1}(x)$. Recall, the standard basis for $C_{i}(x)$ is X^{i}.
b. Find bases for each $Z_{j}(x), B_{j}(x)$.

Key tool: Gaussian elimination.
Solution:
a.

$$
\begin{aligned}
& X^{0}=\{[1],[2],[3],[4]\} \quad X^{2}=\{[2,3,4]\} \\
& X^{\prime}=\{[1,2],[2,3],[2,4],[3,4]\} .
\end{aligned}
$$

Let us clenote the matrix representation of δ_{j}, with respect to the given adderings of the X_{j}^{j} by $\left[\delta_{j}\right]$. [see lecture 21].

Let σ_{i}^{j} de cute the $i^{H^{2}}$ entry of x^{j}.
By definition, $\left[\delta_{j}\right]$ is the matrix whose $i^{\text {th }}$ column is $\left[\delta_{j}\left(\sigma_{i}^{j}\right)\right]_{x^{j-1}}$

Remember, for $\sigma \in X^{\dot{j}}$ $\delta_{j}(\sigma)=\delta(\sigma)=$ sum of all $(j-1)$-dimensional faces of σ.

$$
\left[\delta_{1}\right]=\left([\delta([1,2])]_{x^{0}}\left|[\delta([2,3])]_{x^{0}}\right|[\delta([2,4])]_{x^{0}} \mid[\delta([3,4])]_{x^{0}}\right)
$$

$$
\begin{aligned}
& \left.\left.=\left(\left[\begin{array}{lll}
1
\end{array}\right]+[2]\right]_{x^{0}}\left|[[2]+[3]]_{x^{\circ}}\right|[[2]+[4]]_{x^{\circ}} \right\rvert\,[[3]+[4]]_{x^{\circ}}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
{\left[\delta_{2}\right] } & =\left([\delta([2,3,4])]_{x^{\prime}}\right) \\
& =\left([[2,3]+[2,4]+[3,4]]_{x^{\prime}}\right) \\
& =\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) . \quad \delta_{j}=0 \text { fer } j \geqslant 2, \text { so we are done with } a .
\end{aligned}
$$

b. $Z_{0}(X)=C_{0}(X)$, so X^{0} is a basis for $Z_{0}(X)$.

To find a basis for $B_{j}(X)$, we do Gaussian elimination on the columns of $\left[\delta_{j+1}\right]$. The non-zero columns of the resulting matrix represent a basis for $B_{j}(X)$.
[Brief justification:
Proposition: For any finite dimensional vector space V over F and ordered basis B for V the function $f: V \rightarrow F^{\mid B 1}$ is an isomorphism.

Since f is an iso, it preserves all the algebraic structure of V. This meas that to find a basis for a subspace of V, we can find a basis fo the corresponding subspace of $F^{|B|}$, and then map the elements back into V via F^{-1}.

Column-wise Gaussian elimination on [δ_{1}]:

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{\text { add cd 2 tod } 3}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \xrightarrow{\text { add cd. } 3 \text { to col } 4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

The nonzero columns are the First 3. They represent the basis $\{[1]+[2],[2]+[3],[3]+[4]\}$ for $\mathrm{Bo}(x)$.
$\left[\delta_{2}\right]=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$. $\begin{aligned} & \text { Since it has } 1 \text { column, the matrix is } \\ & \text { already colwn-reduced. }\end{aligned}$
This column represents $[2,3]+[2,4]+[3,4] \in C_{ \pm}(x)$.
Thus, $\{[2,3]+[2,4]+[3,4]\}$ is a basis for $B_{1}(x)$.

To compute a basis for $Z_{j}(x)=\operatorname{ker}\left(\delta_{j}\right)$, We find a basis for the null space of [δ_{j}] by slums the linear system

$$
\left[\delta_{j}\right] \vec{x}=\overrightarrow{0} \text { for } \vec{x} \text {. }
$$

[The justification for this is similar to the justification] For our approach to computing a basis for $B_{j}(X)$.
To solve the linear system, we do row-wise Gaussian elimination on $\left[\delta_{j}\right]$.
Now let's consider the case $j=1$:

$$
\left[\delta_{I}\right]=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{\text { add row } 1 \text { to row } 2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$\xrightarrow{\text { add raw } 2 \text { to row } 3}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\xrightarrow{\text { add row } 3 \text { to row } 4}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Now use back substitution:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}+x_{3}=0 \\
& x_{3}+x_{4}=0
\end{aligned}
$$

x_{4} is a free variable

$$
\text { taking } \left.\left.x_{y}=1 \text {, we find that }\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) \begin{array}{l}
\text { is the unique } \\
\text { hon-zeru solvien } \\
\text { so }\{(10) \text { is a } \\
1 \\
1 \\
1
\end{array}\right)\right\} \begin{gathered}
\text { basis for } \\
\text { whit par pac of }
\end{gathered}
$$

This represents $[2,3]+[2,4]+[3,4] \in Z_{1}(x)$, so
$\{[2,3]+[2,4]+[3,4]\}$ is a basis for $Z_{1}(X)$.

