ANAT 584 Lecture 31, 4/13/20
Today: Finish the example from last lecture

Recall the example we were considering last lecture:

We found that with respect to the standard bases for the vector spaces $C_{j}(X)$, ordered as follows,

$$
\begin{aligned}
x^{0}= & \{[1],[2],[3],[4]\} \\
x^{1}= & \{[1,2],[2,3],[2,4],[3,4]\}, \\
& \delta_{1}: C_{1}(x) \rightarrow C_{0}(x) \quad \delta_{2}: C_{2}(x) \rightarrow C_{1}(x)
\end{aligned}
$$

are represented by the matrices

$$
\left[\delta_{1}\right]=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left[\delta_{2}\right]=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

By performing Gaussian elimination on the columns of $\left[\delta_{1}\right]$. we bund that
$\{[1]+[2],[2]+[3],[3]+[4]\}$ is a basis for $B_{0}(X)$.
Clearly $\{[33]+[34]+[3,4]\}$ is a basis for $B_{1}(X)$.
$B_{j}(x)=0$ for $j \geqslant 2$ because $\delta_{j+1}=0$ for $j \geqslant 2$.

Now we compute bases for each $Z_{j}(X)$.
$Z_{0}(x)=C_{0}(x)$, so X^{0} is a basis for $Z_{0}(x)$.
To compute a basis for $Z_{j}(x), j \geq 1$, is mere involved
Recall: The null space of an $m \times n$ matrix A with coefficients in a field F is the sbospace

$$
\operatorname{null}(A)=\left\{\vec{x} \in F^{n} \mid A \vec{x}=\vec{O}\right\} .
$$

To find a basis for null (A) we solve the linear system $A_{x}=\vec{O}$ using Guustien elimination (on rows).
[It is also possible to ste the system vising Guussion elimination on columns, but we will not discuss this now.]

To compute a basis for $Z_{j}(x)=\operatorname{ker}\left(\delta_{j}\right)$, We find a basis for the null space of $\left[\delta_{j}\right]$.

Fact: The dement s of this basis represent the elements of a basis for $Z_{j}(x)$.
Now let's consider the case $j=1$:

$$
\begin{aligned}
& {\left[\delta_{I}\right]=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{\text { add row } 1 \text { to row } 2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)} \\
& \xrightarrow{\text { lcd } \text { row } 2 \text { to row }} 3\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \xrightarrow{\text { add } \operatorname{row} 3 \text { to row } 4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

Now use back substitution to find a basis for NoIl $\left[\left[\delta_{1}\right]\right.$):

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}+x_{3}=0 \\
& x_{3}+x_{4}=0 \\
& x_{4} \text { is a free variable }
\end{aligned}
$$

The set of solutions to this system is:

$$
\left\{\left.x_{4}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) \right\rvert\, x_{4} \in F_{2}\right\} \text { so }\left\{\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)\right\} \begin{aligned}
& \text { is a basis for } \\
& \text { Null }\left(\left[\delta_{1}\right]\right) \text {. }
\end{aligned}
$$

The column vector $\binom{0}{1}$ represents $[2,3]+[2,4]+[3,4] \in Z_{1}(x)$ with respect to the standard basis for $C_{1}(X)$, so $\{[2,3]+[2,4]+[3,4]\}$ is a basis for $Z_{1}(X)$.

Now let's compute a basis for $Z_{2}(X)$.

$$
\begin{aligned}
{\left[\delta_{2}\right]=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) } & \operatorname{Null}\left(\left[\delta_{2}\right]\right)=\{\overrightarrow{0}\} \in F_{2}^{1} \text {, so } \\
& \operatorname{Null}^{\left(\left[\delta_{2}\right]\right)} \text { has an empty basis } \\
& \Rightarrow Z_{2}(x) \text { has an empty basis } \\
& Z_{2}(\vec{x})=\overrightarrow{0} .
\end{aligned}
$$

Since $C_{j}(X)=\{\overrightarrow{0}\}$ for $j \geqslant 3, Z_{j}(x)=\{\overrightarrow{0}\}$ for $j \geqslant 3$ as well.

Exercise: Compute a basis for each handogy vector space of X.

The key tool is this proposition from lecture 27:
Position: Suppose V is finite dimensional, $W<V$ is a subspace with $\operatorname{dim}(w)=m$ and $\operatorname{dim}(V)=n_{\text {, }}$ and $\left\{v_{1} \ldots, v_{n}\right\}$ is a basis for V such that $\left\{v_{1}, \ldots, v_{m}\right\}$ a basis for $W_{\text {. }}$ Then $\left\{\left[v_{m+1}\right],\left[v_{m+2}\right], \ldots,\left[V_{n}\right]\right\}$ is a basis for V / W.

Using this we see that $H_{1}(x)$ has the empty basis, i.e., $H_{1}(x)$ is trivial.

To compute a basis for $H_{0}(X)$, we need to first extend the basis we computed for $B_{0}(x)$ to one for $Z_{0}(x)$. This can be done by doing Gaussian elimination on the columns of the matrix:
column representation of our basis for B_{0}

$$
\left(\begin{array}{ll|llll}
1 & & 1 & 0 & 0 & 0 \\
1 & 1 & & 0 & 1 & 0 \\
\hline & 1 & 1 & 0 & 0 & 1 \\
& 0 \\
& & 1 & 0 & 0 & 0 \\
& & 1
\end{array}\right) \xrightarrow{\text { G.E. on }}\left(\begin{array}{lll|llll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

column representation of our basis for Z_{0}.
After reduction, the non-zero columns on the right give an extension of our basis for B_{0} o to one for

