ANAT 584 Lecture $36,4 / 24 / 20$
Today: The "standard" algorithm for computing persistent homology.
Aversion of this algorithm appeared in the paper "Topological persistence and simplification" by Edelsbrunner et al. in 2000.
"A more general version appears in "Computing Persistent Homology" by Carson and Zomorodian in 2005.

State- of-the-art persistent homology algorithms are optimized variants of this one.

Input: A simplicial filtration F, represented as matrix (I'll explain this below).

Output: The barcodes Bare $\left(H_{i}(F)\right)$.
Assumptions on F:

- F is indexed by \mathbb{N} (lat the $[0, \infty)$-indeed case works similarly)
- Each F_{2} is a finite simplicial complex.
- There is some $y \in \mathbb{N}$ such that $F_{y}=F_{z}$ for all $z \geq y$.

Let us write F_{y}^{\prime} as $F_{\text {max }}$.
For $\sigma \in F_{\text {max }}$ let birth $(\sigma)=\min \left\{z \mid \sigma \in F_{2}\right\}$.
Example: Let $F_{m a x}$ be the following simplicial complex:

Consider the following filtration of subcomplexes of X :

$$
\begin{array}{lll}
F_{\text {max }}=F_{6} . & \text { birth }(a)=0 & \text { birth }(d)=3 \quad \text { birth }(g)=6 . \\
& \operatorname{birth}^{(b)}=1 & \text { birth }(c)=4 \\
& \operatorname{birth}^{\prime}(c)=2 & \text { birth }(f)=5
\end{array}
$$

Recall: For $j \geq 0, F_{\text {max }}^{j}$ denudes the set of j-simplices of Fax.

We assume each $F_{\text {max }}^{j}$ is ordered so that if $\sigma, \tau \in F_{\max }^{j}$ and birth $(\sigma)<$ birth (τ), then $\sigma<\tau$.

In the example above, the alphabetical order an each $F_{\text {max }}^{\text {max }}$ satisfies this property.

Given these orderings, we can represent each boundary map $\delta_{j}: C_{j}\left(F_{\text {max }}\right) \rightarrow C_{j-1}\left(F_{\text {max }}\right)$ as a matrix $\left[\delta_{j}\right]$ of dimensions $\left|F_{\text {max }}^{j-1}\right| \times\left|F_{\text {max }}^{j}\right|$, as we saw in recent lectures.

In our example

$$
\begin{gathered}
{\left[\delta_{1}\right]=\begin{array}{l}
a \\
b \\
c
\end{array}\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)} \\
{\left[\delta_{2}\right]=\begin{array}{l}
d\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{array}}
\end{gathered}
$$

We place the matrices $\left[\delta_{1}\right],\left[\delta_{2}\right], \ldots,\left[\delta_{\text {dim }\left(F_{\text {max a }}\right.}\right]$ into a block matrix D, given as follows:

$$
D=\left(\begin{array}{cccccc}
O & {\left[\delta_{1}\right]} & 0 & 0 & & 0 \\
0 & 0 & {\left[\delta_{2}\right]} & 0 & \cdots & 0 \\
0 & 0 & 0 & {\left[\delta_{3}\right]} & 0 \\
& \vdots & & \cdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & {\left[\delta_{\left.\operatorname{dim}\left(F_{\max }\right)\right]}^{0}\right.} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Note that the non-zero blocks are all just above the diagonal

In our example, $\operatorname{dim}\left(F_{\text {max }}\right)=2$ and

$$
D=\left(\begin{array}{ccc}
0 & {\left[\delta_{1}\right]} & 0 \\
0 & 0 & {\left[\delta_{2}\right]} \\
0 & 0 & 0
\end{array}\right)=\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& e \\
& d \\
& g
\end{aligned}\left(\begin{array}{ccccc}
a & b & c & d & 1
\end{array}\right)
$$

Note that in D,

- each column corresponds to a simplex in $F_{\text {max }}$ - each row corresponds to a simplex in Fax.

So we can think of the columns and rows as being labeled by simplices.
To compute persistent homology, we do a variant of Gaussian elimination on the columns of D. It is also possible to give a version which does row operations, bit the calm version is the standard one.]
Definition: The pivot of a non-zero column vector \vec{r} is the largest index of a non-zero entry. We dense this pie($\vec{v})$. We wile pic($(\overrightarrow{0})=$ url

We say a matrix is reduced if no two nonzero columns hare the same pivot.
The following algorithm converts any matrix into a reduced one, via left-to-right column operations.

The standard reduction algorithm
Input: m $\times n$ matrix D, with F_{2} coefficients
Output: reduced $m \times n$ matrix R, detained from D by $L \rightarrow R$ column additions
$R \leftarrow D$.
For $j=1$ to n :
while $\exists k<j$ such that null $\neq \operatorname{piv}\left(R_{*, k}\right)=\operatorname{piv}\left(R_{*, j}\right)$ add column k to column j.

After reducing D to obtain a matrix R, we read the barcades $\operatorname{Barc}\left(H_{i}(F)\right)$ off of R, as follows:
$\operatorname{Barc}\left(H_{i}(F)\right)=$
$\{[$ bitt (σ), birth $(\tau))$ pivot of damn τ in R is σ and $\operatorname{dim}(\sigma)=j\}$
$\{[$ birth $(\sigma) \infty \infty) \mid c o l \sigma=0, \sigma$ is not the pivot of any column in $R, \operatorname{dim}(v)=i\}$.

Note: Any interval the form $[z, z)$ is ignored.

