Name:				
First Problem. Let A and B be sets. Are the following statements true or false? Please circle your answers.				
1] If there exists an injective function $f: \mathbb{N} \to A$, then A is uncountable	TRUE		FALSE	
2] If there exists an injective function $f: \mathbb{N} \to A$, then A is countable	TRUE		FALSE	
3] If there exists an injective function $f: \mathbb{N} \to A$, then A is infinite	TRUE		FALSE	
4] If A is infinite, then there exists an injective function $f: \mathbb{N} \to A$	TRUE		FALSE	
5] A is countable if and only if there exists an injective function $f: \mathbb{N} \to A$ or $A = \emptyset$	TRUE		FALSE	
6] A is countable if and only if there exists a surjective function $f: \mathbb{N} \to A$ or $A = \emptyset$	TRUE		FALSE	
7] A is uncountable if and only if there exists an injective function $f: \mathbb{R} \to A$	TRUE		FALSE	
8] A is uncountable if and only if there exists a surjective function $f: \mathbb{R} \to A$	TRUE		FALSE	
9] A is uncountable if and only if there exists no surjective function $f: \mathbb{N} \times \mathbb{Z} \times \mathbb{Q} \to A$	TRUE		FALSE	
10] If A is uncountable, then there exists a bijective function $f:A\to\mathbb{R}$, i.e., $A\simeq\mathbb{R}$	TRUE		FALSE	
11] If A is countable and B is countable, then $A \cup B$ is countable	TRUE		FALSE	
12] If A is countable and B is uncountable, then $A \cup B$ is uncountable	TRUE		FALSE	
13] If A is uncountable and B is uncountable, then $A \cup B$ is uncountable	TRUE		FALSE	
14] If A is countable and B is countable, then $A \cap B$ is countable	TRUE		FALSE	
15] If A is countable and B is uncountable, then $A \cap B$ is countable	TRUE		FALSE	
16] If A is uncountable and B is uncountable, then $A \cap B$ is uncountable	TRUE		FALSE	
17] If $A \times B$ is countable, then both A and B are countable	TRUE		FALSE	
18] If $A \times B$ is countable, then A or B is countable	TRUE		FALSE	
19] If $A \times B$ is uncountable, then both A and B are uncountable	TRUE		FALSE	
20] If $A \times B$ is uncountable, then A or B is uncountable	TRUE		FALSE	
Second Problem.				
Suppose that A is a set and that $B \subset A$ is a subset of A, and assume that $B \neq A$.				

Suppose that A is a set and that $B \subset A$ is a subset of A, and assume that $B \neq A$. Is it possible for A and B to have the same cardinality, i.e., $A \simeq B$?

- A] No, it is not possible for any A.
- B] Yes, it is possible for any A.
- C] Yes, but only if A is empty.
- D] Yes, but only if A is not empty.
- E] Yes, but only if A is finite.
- F Yes, but only if A is infinite.
- G Yes, but only if A is countable.
- H] Yes, but only if A is uncountable.