65536 65536 |
1461501637330902918203684832716283019655932542976 1461501637330902918203684832716283019655932542976 |
1/2*sqrt(3) 1/2*sqrt(3) |
0.866025403784439 0.866025403784439 0.866025403784439 0.866025403784439 0.866025403784439 0.866025403784439 |
0.86602540378443864676372317075293618347140262690519 0.86602540378443864676372317075293618347140262690519 |
0.866 0.866 |
|
12222 12222 |
2 * 3^2 * 7 * 97 2 * 3^2 * 7 * 97 |
2 * 3^2 * 7 * 97 2 * 3^2 * 7 * 97 |
[2, 3, 7, 97] [2, 3, 7, 97] |
[2, 3, 7, 97] [2, 3, 7, 97] |
2 2 |
[2, 3, 7, 97, 'text'] [2, 3, 7, 97, 'text'] |
12 12 |
23 23 |
Traceback (click to the left of this block for traceback) ... ZeroDivisionError: Inverse does not exist. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_19.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("YS5pbnZlcnNlX21vZCg1Nik="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/private/var/folders/ml/70rrwtg15qzbrggwjj6s2z800000gn/T/tmpwdhXFx/___code___.py", line 3, in <module> exec compile(u'a.inverse_mod(_sage_const_56 ) File "", line 1, in <module> File "integer.pyx", line 5486, in sage.rings.integer.Integer.inverse_mod (sage/rings/integer.c:32847) ZeroDivisionError: Inverse does not exist. |
|
<type 'sage.rings.integer.Integer'> <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> <type 'sage.rings.integer.Integer'> <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> |
23 23 |
1/12222 1/12222 |
4 4 |
|
1 1 |
2 2 |
|
(12222, 550, 122) (550, 122, 62) (122, 62, 60) (62, 60, 2) (60, 2, 0) 2 (12222, 550, 122) (550, 122, 62) (122, 62, 60) (62, 60, 2) (60, 2, 0) 2 |
True True |
(2, -9, 200) (2, -9, 200) |
|
True True |
arctan(sqrt(x)) arctan(sqrt(x)) |
<type 'sage.symbolic.expression.Expression'> <type 'sage.symbolic.expression.Expression'> |
x*arctan(sqrt(x)) - sqrt(x) + arctan(sqrt(x)) x*arctan(sqrt(x)) - sqrt(x) + arctan(sqrt(x)) |
|
x \arctan\left(\sqrt{x}\right) - \sqrt{x} + \arctan\left(\sqrt{x}\right) x \arctan\left(\sqrt{x}\right) - \sqrt{x} + \arctan\left(\sqrt{x}\right) |
At this point you should check the Typeset box at the top of this worksheet.
|
|
|
|
|
Click to the left again to hide and once more to show the dynamic interactive window |
|
Sleeping...
|
|
|
|
|
Traceback (click to the left of this block for traceback) ... RuntimeError: f appears to have no zero on the interval Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_7.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("ZmluZF9yb290KHheNSArIDYqeCA9PSAyMCwgMCwgMSk="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/private/var/folders/ml/70rrwtg15qzbrggwjj6s2z800000gn/T/tmpqm_dZy/___code___.py", line 3, in <module> exec compile(u'find_root(x**_sage_const_5 + _sage_const_6 *x == _sage_const_20 , _sage_const_0 , _sage_const_1 ) File "", line 1, in <module> File "/Applications/Sage.app/Contents/Resources/sage/local/lib/python2.7/site-packages/sage/numerical/optimize.py", line 76, in find_root return f.find_root(a=a,b=b,xtol=xtol,rtol=rtol,maxiter=maxiter,full_output=full_output) File "expression.pyx", line 8806, in sage.symbolic.expression.Expression.find_root (sage/symbolic/expression.cpp:35998) File "/Applications/Sage.app/Contents/Resources/sage/local/lib/python2.7/site-packages/sage/numerical/optimize.py", line 108, in find_root raise RuntimeError("f appears to have no zero on the interval") RuntimeError: f appears to have no zero on the interval |
|
|
|
|
|
|
|
Unckeck the Typeset box now, please.
|
Symmetric group of order 4! as a permutation group Symmetric group of order 4! as a permutation group |
|
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)] [(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)] |
(5, 30, 11, 4) (5, 30, 11, 4) |
|
(4, (1,4)(2,3), True) (4, (1,4)(2,3), True) |
|
(8, False, 2, True) (8, False, 2, True) |
(False, True) (False, True) |
|
|
* a b c d e f g h +---------------- a| a b c d e f g h b| b a d c f e h g c| c g a e d h b f d| d h b f c g a e e| e f g h a b c d f| f e h g b a d c g| g c e a h d f b h| h d f b g c e a * a b c d e f g h +---------------- a| a b c d e f g h b| b a d c f e h g c| c g a e d h b f d| d h b f c g a e e| e f g h a b c d f| f e h g b a d c g| g c e a h d f b h| h d f b g c e a |
{'a': (), 'c': (1,2)(3,4), 'b': (2,4), 'e': (1,3), 'd': (1,2,3,4), 'g': (1,4,3,2), 'f': (1,3)(2,4), 'h': (1,4)(2,3)} {'a': (), 'c': (1,2)(3,4), 'b': (2,4), 'e': (1,3), 'd': (1,2,3,4), 'g': (1,4,3,2), 'f': (1,3)(2,4), 'h': (1,4)(2,3)} |
. a b c d e f g h +---------------- a| a a a a a a a a b| a a f f a a f f c| a f a f f a f a d| a f f a f a a f e| a a f f a a f f f| a a a a a a a a g| a f f a f a a f h| a f a f f a f a . a b c d e f g h +---------------- a| a a a a a a a a b| a a f f a a f f c| a f a f f a f a d| a f f a f a a f e| a a f f a a f f f| a a a a a a a a g| a f f a f a a f h| a f a f f a f a |
Multivariate Polynomial Ring in a, b, c, d, e over Rational Field Ideal (a*c, b*d, a*e, d*e) of Multivariate Polynomial Ring in a, b, c, d, e over Rational Field Multivariate Polynomial Ring in a, b, c, d, e over Rational Field Ideal (a*c, b*d, a*e, d*e) of Multivariate Polynomial Ring in a, b, c, d, e over Rational Field |
[ -e 0 c 0] [ 0 -e 0 b] [ 0 0 -d a] [-b*d a*c 0 0] [ -e 0 c 0] [ 0 -e 0 b] [ 0 0 -d a] [-b*d a*c 0 0] |
[1]: _[1]=d*e _[2]=a*e _[3]=b*d _[4]=a*c [2]: _[1]=c*gen(2)-e*gen(4) _[2]=b*gen(1)-e*gen(3) _[3]=a*gen(1)-d*gen(2) _[4]=a*c*gen(3)-b*d*gen(4) [3]: _[1]=a*c*gen(2)-b*c*gen(3)-b*d*gen(1)+e*gen(4) [4]: _[1]=0 [5]: _[1]=gen(1) [1]: _[1]=d*e _[2]=a*e _[3]=b*d _[4]=a*c [2]: _[1]=c*gen(2)-e*gen(4) _[2]=b*gen(1)-e*gen(3) _[3]=a*gen(1)-d*gen(2) _[4]=a*c*gen(3)-b*d*gen(4) [3]: _[1]=a*c*gen(2)-b*c*gen(3)-b*d*gen(1)+e*gen(4) [4]: _[1]=0 [5]: _[1]=gen(1) |
|