
Updated October 30, 2024

Homework problems for AMAT 540A (Topology I), Fall 2024. Over the course of the semester
I’ll add problems to this list, with each problem’s due date specified. Each problem is worth
2 points.

Solutions will be gradually added (and may be hastily written without proofreading).

——————————–

Problem 1 (due Weds 9/4): Let A be a set and let R be a relation on A that is reflexive,
symmetric, transitive, and antisymmetric. Prove that for all a, a′ ∈ A we have aRa′ if and
only if a = a′.

Solution: (⇒): Suppose aRa′. By symmetry, a′Ra. By antisymmetry, a = a′. (⇐): Suppose
a = a′. By reflexivity, aRa. Since a = a′, we conclude aRa′. □

Problem 2 (due Weds 9/4): Let f : A → B be a function. Suppose that for all A0 ⊆ A we
have f−1(f(A0)) = A0. Prove that f is injective.

Solution: Let a, a′ ∈ A such that f(a) = f(a′). Then

{a} = f−1(f({a})) = f−1({f(a)}) = f−1({f(a′)}) = f−1(f({a′})) = {a′},

so a = a′. □

Problem 3 (due Weds 9/4): Prove that if a relation is symmetric and antisymmetric, then it
is transitive. (So the thing I couldn’t think of in class actually doesn’t exist, which is nice.)

Solution: Suppose R is a relation on a set A, and R is symmetric and antisymmetric. Let
a, b, c ∈ A such that aRb and bRc. By symmetry, cRb. By antisymmetry, b = c. Since aRb
and b = c we conclude aRc. □

—————————————–

Problem 4 (due Weds 9/11): Let X be a set and view the power set P(X) as a poset via
the partial order ⊆. Prove that every subset A of P(X) has a greatest lower bound. [Added
later: If you want to assume A is non-empty that’s fine, the A = ∅ case is a little weird.
(Technically *every* element is a lower bound of the empty set, but that’s weird.)]

Solution: Let A ⊆ P(X). Let B =
⋂

A∈A
A. Then B ⊆ A for all A ∈ A, so B is a lower

bound of A. Also, given any lower bound C of A, we have C ⊆ A for all A ∈ A, so C ⊆ B.
We conclude that B is the greatest lower bound of A. [Remark: If A = ∅ then, vacuously,
every subset of X is a lower bound of ∅, and so X itself is the greatest lower bound of ∅.
Weird.] □
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Problem 5 (due Weds 9/11): Let P and Q be posets with partial orders ≤P and ≤Q. Let
≤prod be the product order on P × Q. Prove that if every subset of P has a least upper
bound in ≤P and every subset of Q has a least upper bound in ≤Q, then every subset of
P ×Q has a least upper bound in ≤prod.

Solution: Let X ⊆ P × Q. Let A = {p ∈ P | (p, q) ∈ X for some q ∈ Q} and B = {q ∈
Q | (p, q) ∈ X for some p ∈ P}. Let a be the least upper bound of A and let b be the least
upper bound of B. We claim that (a, b) is the least upper bound of X. For any (p, q) ∈ X
we have p ≤P a and q ≤Q b, so (p, q) ≤prod (a, b), so it is an upper bound. Now let (c, d)
be any upper bound of X. For any (p, q) ∈ X we have p ≤P c and q ≤Q d. Since a and b
are the respective least upper bounds, a ≤P c and b ≤Q d. Thus (a, b) ≤prod (c, d), and we
conclude that (a, b) is the least upper bound of X. □

Problem 6 (due Weds 9/11): Consider the Cantor set C =
∏
N
{0, 1}, so elements of C are

infinite binary sequences (a1, a2, . . . ). Let ψ : C → R be the function sending (a1, a2, . . . ) to
∞∑
i=1

ai
10i

(don’t worry, this infinite series converges thanks to some calculus thing, so this really

is an element of R). Prove that ψ is injective.

Solution: Let a⃗ = (a1, a2, . . . ), b⃗ = (b1, b2, . . . ) ∈ C such that ψ(⃗a) = ψ(⃗b), so
∞∑
i=1

ai
10i

equals

∞∑
i=1

bi
10i

. By calculus stuff,
∞∑
i=1

ai−bi
10i

= 0. Multiplying both sides by 10 we get a1 − b1 +

∞∑
i=1

ai+1−bi+1

10i
= 0. Since all the ai and bi are 0 or 1, we know that

∞∑
i=1

ai+1−bi+1

10i
is bounded

above and below by
∞∑
i=1

1
10i

= 1/9 and
∞∑
i=1

−1
10i

= −1/9. Hence |a1 − b1| ≤ 1/9, so a1 − b1 = 0.

Now multiplying our new equation
∞∑
i=1

ai+1−bi+1

10i
= 0 on both sides by 10, we get a2 − b2 +

∞∑
i=1

ai+2−bi+2

10i
= 0, and the same argument shows a2−b2 = 0. Repeating this, we get ai−bi = 0

for all i, and conclude that a⃗ = b⃗. □

—————————————–

Problem 7 (due Weds 9/18): Let X = {a, b} and let T ⊆ P(X) satisfy ∅, X ∈ T . Prove
that T is a topology.

Solution: Since X is finite and T contains ∅ and X, it suffices to show that for any U, V ∈ T
we have U ∪V, U ∩V ∈ T . If either U or V is ∅ or X, or if U = V , this is trivially true. Now
assume none of these are the case, so U and V each have exactly one element, and they are
different. Without loss of generality U = {a} and V = {b}, and now the result is clear. □

Problem 8 (due Weds 9/18): Let X be a set and fix x0 ∈ X. Let Tx0 = {U ⊆ X | x0 ∈
U} ∪ {∅}. Prove that Tx0 is a topology.



Solution: We are given that ∅ ∈ Tx0 , and clearly X ∈ Tx0 since x0 ∈ X. Now let Uα ∈ Tx0

for all α ∈ Λ. If all Uα are empty, then their union is empty, hence open. If some Uα is
non-empty, it must contain x0, so the union of all of them contains x0, and hence is open.
Finally, let U, V ∈ Tx0 . If U or V is empty, so is their intersection, hence U ∩ V is open. If
neither is empty, they both contain x0, hence so does their intersection, so it is open. □

Problem 9 (due Weds 9/18): Let X = N with the finite complement topology. Let B =
{U ⊆ X | 2024 ≤ |X \ U | <∞}. Prove that B is a basis for a topology, and the topology it
generates equals the finite complement topology.

Solution: Let x ∈ X. Since X is infinite, there exists S ⊆ X \ {x} with |S| = 2024. Set
U = X \ S, so X \ U = S. Now U ∈ B, and x ∈ U , thus proving the first basis axiom.
Next let x ∈ U ∩ V for U, V ∈ B. Note that X \ (U ∩ V ) = (X \ U) ∪ (X \ V ). Since
2024 ≤ |X \U |, |X \V | <∞, we have 2024 ≤ |(X \U)∪ (X \V )| <∞, so in fact U ∩V ∈ B.
This proves the second axiom. Now we must show that the topology generated by B equals
the finite complement topology. Every set in B has finite complement, so one direction is
clear. Now let x ∈ W for an arbitrary W ⊆ X with |X \W | < ∞. Since X is infinite, we
can choose S ⊆ X \W with |S| = 2024. Set W ′ := W \ S. Since x ∈ W we have x ̸∈ S, so
x ∈ W ′. Also, |X \W ′| = |X \ (W \S)| ≥ |S| = 2024, so W ′ ∈ B. Now x ∈ W ′ ⊆ W reveals
that every W open in the finite complement topology is also open in the topology generated
by B, and we are done. □

—————————————–
No homework due 9/25, just the exam.
—————————————–

Problem 10 (due Weds 10/2): Let X = N with the finite complement topology and let

S ⊆ X. Prove that the interior S̊ is empty if and only if X \ S is infinite.

Solution: (⇒): Contrapositively, suppose that X \ S is finite. Then S is non-empty and

open, and so S̊ = S is non-empty. (⇐): Contrapositively, suppose S̊ ̸= ∅, so there exists a
non-empty open U contained in S. Thus X \U is finite, and hence so is its subset X \S. □

Problem 11 (due Weds 10/2): Let X be a topological space in which every subset is either
closed or dense. Prove that every subset of X containing a non-empty open set is open.

Solution: Let ∅ ≠ U ⊆ S ⊆ X for U open in X. We claim that S is open. Since X \ S is
contained in the closed set X \ U ̸= X, the closure of X \ S is too, and hence cannot equal
X. This means X \ S is not dense, so it must be closed, and thus S is open. □

Problem 12 (due Weds 10/2): Let X and Y be [added: non-empty] [oh shoot also not
singletons!] sets with the finite complement topology. Prove that if the product topology on
X × Y equals the finite complement topology on X × Y , then X and Y are both finite.



Solution: Suppose X and Y are not both finite, so without loss of generality X is infinite.
Fix y0 ∈ Y (here we needed to assume the sets are non-empty). Now Y \ {y0} is open in
Y , so X × (Y \ {y0}) is open in the product topology on X × Y . But the complement of
X × (Y \ {y0}) in X × Y is X × {y0}, which is infinite [and not all of X × Y since we
rule out X and Y being singletons], so X × (Y \ {y0}) is not open in the finite complement
topology. □

—————————————–

Problem 13 (due Weds 10/9): Let f : X → Y be a continuous surjection of topological
spaces. Suppose that Y is Hausdorff, and that for all y ∈ Y the subspace f−1({y}) of X is
open and Hausdorff. Prove that X is Hausdorff.

Solution: Let x ̸= x′ in X. First suppose f(x) ̸= f(x′). Since Y is Hausdorff we can
choose disjoint open neighborhoods V and V ′ of f(x) and f(x′) in Y . Let U = f−1(V )
and U ′ = f−1(V ′). Now x ∈ U , x′ ∈ U ′, U and U ′ are open in X, and they are disjoint.
Alternately, suppose f(x) = f(x′), call it y, so x, x′ ∈ f−1({y}). Since f−1({y}) is Hausdorff,
we can choose disjoint open neighborhoods of x and x′ in f−1({y}), and since f−1({y}) is
open in X, these neighborhoods are open in X, so we are done. □

Problem 14 (due Weds 10/9): Prove that C =
∏

N{0, 1} (with the product topology) is
Hausdorff.

Solution: Let (a1, a2, . . . ) ̸= (b1, b2, . . . ) in C, so these are infinite sequences of 0s and 1s.
Choose some i ∈ N such that ai ̸= bi, say without loss of generality that ai = 0 and
bi = 1. Let Ui = {0}, Vi = {1}, and Uj = Vj = {0, 1} for all j ̸= i. Now U1 × U2 × · · ·
and V1 × V2 × · · · are open neighborhoods of (a1, a2, . . . ) and (b1, b2, . . . ) respectively, and
they are disjoint since the ith entry of any element of their intersection would have to be
simultaneously 0 and 1. □

Problem 15 (due Weds 10/9): Let X be a space with the finite complement topology. Prove
that if X is Hausdorff then it is finite.

Solution: Suppose X is Hausdorff. Let x ̸= y in X. Choose disjoint open neighborhoods U
of x and V of y in X. Since U and V are non-empty and open, they have finite complement.
Now U ∩ V = ∅ implies (X \ U) ∪ (X \ V ) = X, so X is a union of two finite sets, hence is
finite. □

—————————————–

No homework over October break (nothing due 10/16).

—————————————–



Problem 16 (due Weds 10/23): Let (X, d) be a metric space and let x ∈ X. Let fx : X → R
be fx(y) := d(x, y). Prove that fx is continuous.

Solution: Let (a, b) be a basic open set in R, so a < b. Then f−1
x (a, b) = {y ∈ X | a <

d(x, y) < b}. This is equal to {y ∈ X | y < b} ∩ {y ∈ X | a < y}. That first set is the basic
open set Bb(x), so it suffices to show that {y ∈ X | a < y} is open. Indeed, for any y in this
set, the open ball centered at y with radius (y − a)/2 is fully contained in this set. □

Problem 17 (due Weds 10/23): Let (X, d) be a metric space. Let Y ⊆ X. The induced
metric dY on Y is defined to be dY (y, y

′) := d(y, y′). (This is clearly a metric, you don’t have
to prove that.) Prove that the metric topology on Y coming from dY equals the subspace
topology on Y coming from X.

Solution: First let us prove that every basic open set in the metric topology is open in
the subspace topology. A basic open set in the metric topology is of the form {y′ ∈ Y |
dY (y, y

′) < r} for some y ∈ Y and r ∈ R. This equals Y ∩ {x′ ∈ X | d(y, x′) < r}, i.e., Y
intersect a (basic) open set in X, so indeed this is open in the subspace topology. Next let
us prove that every open set in the subspace topology is open in the metric topology. Let
Y ∩U be an arbitrary open set in the subspace topology, so U is open in X. Let y ∈ Y ∩U .
Choose r ∈ R such that Br(y) ⊆ U (here Br(y) is the open ball of radius r centered at y in
X). Now Y ∩ Br(y) = {y′ ∈ Y | d(y, y′) < r} = {y′ ∈ Y | dY (y, y′) < r}, which is a basic
open set in the metric topology. Hence y ∈ Y ∩Br(y) ⊆ Y ∩U shows that Y ∩U is open in
the metric topology. □

Problem 18 (due Weds 10/23): Let X be a set. A function d : X×X → R is a pseudometric
if it satisfies the same axioms as a metric, except we allow d(x, y) = 0 even if x ̸= y. Define
Br(x) = {y ∈ X | d(x, y) < r} for r ∈ R. It turns out the collection of all Br(x) forms a basis
for a topology on X (you don’t need to prove this). Prove that if X with this pseudometric
topology coming from d is Hausdorff, then d is actually a metric, i.e., d(x, y) = 0 implies
x = y.

Solution: Suppose the pseudometric topology on X is Hausdorff, and suppose x, y ∈ X with
d(x, y) = 0. We must show that x = y. Since X is Hausdorff, it suffices to show that
every (basic) open neighborhood of x intersects every (basic) open neighborhood of y. Let
x ∈ Br(z) and y ∈ Bs(w). Since x ∈ Br(z) we know d(z, x) < r, and since d(x, y) = 0
we get d(z, y) ≤ d(z, x) + d(x, y) < r, so y ∈ Br(z). Thus y ∈ Br(z) ∩ Bs(w), so this is
non-empty. □

—————————————–
No homework due 10/30, just the exam.
—————————————–

Problem 19 (due Weds 11/6): Let X = Z with the “particular point” topology, where a
non-empty set is open if and only if it contains 0. Prove that X is path connected.



Problem 20 (due Weds 11/6): Prove that R with the finite complement topology is path
connected. [As a remark, it turns out Z with the finite complement topology is not path
connected, but this is kind of hard to prove.]

Problem 21 (due Weds 11/6): Let (X, d) be a metric space. A geodesic is a path p : [a, b] → X
such that for all t, t′ ∈ [a, b] we have d(p(t), p(t′)) = |t− t′|. Call X a geodesic space if for all
x, y ∈ X there exists a geodesic from x to y. Prove that any geodesic space is locally path
connected.

—————————————–


