CSI 604 – Spring 2016

Solutions to Homework – VI

Problem 1:

Idea: Suppose the Graph $G(V, E)$ has a spanning tree T such that each node in L is a leaf (i.e., a node of degree 1). Thus, when the nodes in L are deleted from T , the remaining graph is a tree on the set of nodes $V - L$. Further, for each node $v \in L$, there is a node $w \in V - L$ such that the edge $\{v, w\}$ is in E. As the following lemma shows, these two conditions which are necessary for the existence of such a spanning tree are also sufficient.

Lemma 1: Let $G(V, E)$ be a connected undirected graph and let L be a subset of nodes. G has a spanning tree in which all the nodes in L appear as leaves if and only if *both* of the following conditions hold: (i) graph $G'(V - L, E')$ obtained from G by deleting the nodes in L (and the edges incident on those nodes) is *connected* and (ii) for each node $v \in L$, there is a node $w \in V - L$ such that the edge $\{v, w\}$ is in E.

Proof:

Part 1: Suppose G satisfies Conditions (i) and (ii) of Lemma 1. We can construct a spanning tree T for G where all the nodes in L are leaves of T as follows. First construct a spanning tree T' for $G'(V - L, E')$. (T' exists since G' is connected.) For each node $v \in L$, by Condition (ii), there is a node $w \in V - L$ such that $\{v, w\}$ is an edge of G. Thus, we can attach v to T' as a child of w, thus ensuring that v is a leaf in the resulting spanning tree. We get the required spanning tree T after all the nodes in L get attached to appropriate nodes of T' .

Part 2: Suppose G has a spanning tree T such that each node in L is leaf in T. Thus, deleting the nodes in L cannot disconnect the tree. Therefore, the graph $G'(V - L, E')$ has a spanning tree. In other words, Condition (i) holds. The fact that each node v in L is a leaf in T points that the parent w of v is a node in $V - L$; that is, $\{v, w\}$ is an edge in G. Therefore, Condition (ii) also holds.

High-Level Description:

- 1. Construct graph $G'(V L, E')$ by deleting from G the nodes in L and the edges incident on those nodes.
- 2. if $(G'$ is not connected) then output "There is no solution" and stop.
- 3. Construct a minimum spanning tree T' for G' .
- 4. for each node $v \in L$ do // Attach node v to T' using an edge of minimum cost.
	- (a) Find the subset S_v of $V L$ such that v is adjacent to each node $w \in S_v$ in G.
	- (b) if $(S_v$ is empty) then output "There is no solution" and stop.
	- (c) Find a node $w \in S_v$ such that the weight of the edge $\{v, w\}$ is a minimum over all the edges between v and the nodes in S_n .
	- (d) Attach v as a child of w in T' .
- 5. Output the spanning tree T that results at the end of Step 4.

Proof of correctness: The fact that the above algorithm outputs a spanning tree T where every node of L is a leaf if and only if such a tree exists is a direct consequence of Lemma 1. We now show that among all the spanning trees of G in which the nodes in L appear as leaves, T has the smallest cost.

Let T^* be an optimal spanning tree of G in which all the nodes in L appear as leaves. We can divide the cost of T^* into two parts: (i) the cost $C_1(T^*)$ of the spanning tree $T^*_{G'}$ for $G'(V - L, E')$ and (ii) the total cost $C_2(T^*)$ of the edges that attach each node of L to the spanning tree $T^*_{G'}$. Thus, $C(T^*) = C_1(T^*) + C_2(T^*)$. Define $C_1(T)$ and $C_2(T)$ for the spanning tree T for $G'(V - L, E')$ constructed by the algorithm in an analogous manner. Note that the cost of T , denoted by $C(T)$, is given by $C(T) = C_1(T) + C_2(T)$. Since the algorithm constructs a minimum spanning tree of G', we have $C_1(T) \leq C_1(T^*)$. Further, since Step 4(c) of the algorithm attaches each node $v \in L$ to a node w of the spanning tree of G' such that the cost of the edge $\{v, w\}$ is a minimum over all the edges between v and the nodes in $V - L$, it follows that $C_2(T) \leq C_2(T^*)$. As a consequence, $C(T) = C_1(T) + C_2(T)$ $\leq C_1(T^*) + C_2(T^*) = C(T^*)$. Thus, the tree T produced by the algorithm is optimal.

Running Time Analysis: We will consider each step of the algorithm separately. We use the standard notation that $n = |V|$ and $m = |E|$.

Step 1: We can implement this step in time $O(m \log n)$ as follows. We first sort the nodes in L. Since $|L| \leq n$, this can be done in $O(n \log n)$ time. To construct the adjacency list for G' from that of G, we proceed as follows. For each node $v \in V$, if $v \in L$ (which can be determined using binary search in $O(\log n)$ time), we delete the adjacency list of v; otherwise, we go through the adjacency list of v and delete each node x such that x appears in L. Thus, for each node v, this can be done in time $O(\text{degree}(v) \log n)$. So, the total time for Step 1 is $O(\sum_{v \in V} \text{degree}(v) \log n) = O(m \log n)$.

Step 2: Checking whether G' is connected can be done in $O(m + n)$ time using breadth-first or depth-first search.

Step 3: Constructing a minimum spanning tree for G' can be done using Kruskal's or Prim's algorithm in $O(m \log n)$ time.

Step 4: To implement this step, we first sort the nodes in $V - L$. Since $|V - L| \leq n$, the sorting step can be done in $O(n \log n)$ time. Now, for each node $v \in L$, we can go through the adjacency list of v, construct the set S_v (i.e., the set of nodes in $V - L$ to which v is adjacent in G) using a binary search of $V - L$. During this process, we can also find a node w such that the edge $\{v, w\}$ has the minimum cost (among all the edges between v and the nodes in S_v) in time $O(\text{degree}(v) \log n)$. So, the total time for Step 4 is $O(\sum_{v \in L} \text{degree}(v) \log n) = O(m \log n)$ (since $L \subseteq V$).

Step 5: Since T has n nodes and $n-1$ edges, Step 5 can be done in $O(n)$ time.

By considering the times for Steps 1 through 5, it can be seen that the overall running time of the algorithm is $O(m \log n)$.

Problem 2:

Terminology: In the implementation of Prim's Algorithm discussed below, we use two queues, each implemented as a doubly-linked list. We use the term 'node' to refer to an item in these lists. We use the term 'vertex' to refer to a node of the given graph $G(V, E)$. As usual, $n = |V|$ and $m = |E|$.

Idea: Since there are only two possible edge weights (namely, 0 and 1), we don't need a general priority queue which may use $O(\log n)$ time for each EXTRACT_MIN and DECREASE_KEY operation.

Instead, we use two queues, denoted by Q_0 and Q_1 , with Q_0 (Q_1) containing vertices which have not been added to the tree and whose current key values are 0 (1). If Q_0 is non-empty, we remove a node from Q_0 and add the corresponding vertex to the current tree; otherwise, we remove a node from Q_1 and add the corresponding vertex to the current tree. As noted below, each of these queue operations can be implemented to run in $O(1)$ time, and this leads to the desired running time of $O(m+n)$.

(a) Data structures used:

• Two doubly-linked lists Q_0 and Q_1 . Each node in these lists has three fields: vertex-id (an integer, indicating the corresponding vertex of the graph), previous and next (two pointers, which point to the next and previous nodes of the corresponding list). Each node in Q_0 (Q_1) represents a vertex whose current key value is 0 (1) and which has not yet been added to the MST.

Note: We use doubly-linked lists for the following reason: given a pointer to a node in a doublylinked list, the node can be deleted from the list in $O(1)$ time. Also, a node can be inserted into a doubly-linked list in $O(1)$ time.

- An array vertex-info of size n. Element vertex-info[i] of this array is a record containing the following information about vertex v_i of G $(1 \leq i \leq n)$:
	- (i) key: The current key value of the vertex. (This value can only be 0, 1 or ∞ .)
	- (ii) parent: A node u such that $w(u, v_i)$ is the key value of v_i .
	- (iii) in-tree: A Boolean value indicating whether or not the vertex has been added to the MST.
	- (iv) pointer: The pointer to the node with vertex-id equal to i ; This node may be in Q_0 or Q_1 .

Note: To keep the pseudocode description simple, we use $key(v)$ to refer to the key value stored in the record for vertex v. (A similar notation is used for the other fields of the record.)

• For each node u , its adjacency list is denoted by Adj[u] (as usual).

(b) Modified Pseudocode for Prim's Algorithm:

Note: Let r be the (given) root vertex for the MST to be constructed. The variable mst-size represents the number of vertices in the current tree.

```
1. for each vertex v do {
 key(v) = infinity; parent(v) = NULL; in-tree(v) = false; pointer(v) = NULL;}
```
2. Set $key(r) = 0$ and mst-size = 1.

- 3. (a) Create a node (of a doubly-linked list) with vertex-id set to r and next and previous pointers set to NULL. Insert this node into list Q0.
	- (b) Initialize Q1 to empty.

```
4. while (mst-size < n) do {
 (A) if (Q0 is not empty)
         Remove the first node from Q0.
     else
         Remove the first node from Q1.
 (B) Let u be the vertex-id stored in the node just removed.
     Set in-tree(u) = true; mst-size++;
 (C) for each vertex v in Adj[u] do {
          if (in-tree(v) = false) { // No need to consider nodes already in the tree.
              if (key(v) = infinity) { // key(v) will change to 0 or 1.
                 (i) key(v) = w(u,v); parent(v) = u;
                (ii) Create a node (of a doubly-linked list) with
                     vertex-id set to v and previous and next pointers
                     set to NULL. Let pointer(v) point to this node.
               (iii) if (key(v) = 0)Insert the node created in Step 4(C)(ii) into Q0.
                     else
                        Insert the node created in Step 4(C)(ii) into Q1.
              } // End of key(v) = infinity case.
              else \{\frac{7}{1} key(v) is 0 or 1.
                if (key(v) = 1) { // Key value may change to 0.
                   if (w(u,v) = 0) {
                      (i) key(v) = 0; parent(v) = u;
                     (i) Use pointer(v) to remove the node with
                          vertex-id = v from Q1 and insert it into Q0.
                   }
                }
              }
          } // End of outermost if.
     } // End of for loop (of Step 4(C)).
} // End of while loop (Step 4).
```
(c) Running time analysis: Step 1 runs in $O(n)$ time. Steps 2 and 3 run in $O(1)$ time. We analyze Step 4 as follows.

- The while loop of Step 4 runs at most n times. For each iteration of this loop, Steps $4(A)$ and 4(B) run in $O(1)$ time. So, over all the *n* iterations, Steps 4(A) and 4(B) use $O(n)$ time.
- For each vertex u, Step 4(C) examines the adjacency list of u. For each node v in Adj[u], the time used in Step $4(C)$ is $O(1)$ since we can remove and insert a node from a doubly-linked list in $O(1)$ time. So, the time spent in Step $4(C)$ for each vertex u is $O(\text{degree}(u))$. Thus, over all the iterations of the **while** loop of Step 4, the total time spent in Step $4(C)$ is $O(\sum_{u \in V} \text{degree}(u))$ $O(m)$, since $\sum_{u \in V}$ degree $(u) = 2m$.

Thus the total time for Step 4 is $O(m+n)$. Since this dominates the running time, the overall running time of the algorithm is also $O(m + n)$.

Problem 3:

As defined in the problem, a **special** node in a directed graph $D(V, A)$ is one whose indegree = $n-1$ and whose outdegree = 0. (Recall that $n = |V|$.) We first show that each directed graph (without self loops) has at most one special node.

Lemma 2: Each directed graph $D(V, A)$ (without self loops) has at most one special node.

Proof: The proof is by contradiction. Suppose $D(V, A)$ has two distinct special nodes v and w. If there is an edge from v to w , then the outdegree of v is 1 and so v cannot be a special node. On the other hand, if there is no edge from v to w, then the indegree of w is less than $n-1$, and so w cannot be a special node. We get a contradiction in each case and the lemma follows.

Idea: Initially, all nodes in V are candidates for the special node. Let M denote the adjacency matrix of G. Consider any pair of nodes v_i and v_j and suppose we check the entry $M[i, j]$.

- (a) If $M[i, j] = 0$, then there is no edge from v_i to v_j ; thus, the indegree of v_j will be less than $n 1$. Therefore, v_i cannot be the special node.
- (b) If $M[i, j] = 1$, then there is an edge from v_i to v_j ; thus, the outdegree of v_i cannot be 0. Therefore, v_i cannot be the special node.

Hence, checking one entry of M allows us to *eliminate* one node from the set of candidates for the special node. So, after $n-1$ checks of M, we can reduce the number of candidates to 1. If the remaining candidate is node v_i , then we can compute the indegree and outdegree of v_i (by probing all the entries of row *i* and column *i* of *M*) and determine whether or not v_i is special. We need to check at most $2n$ entries of M to compute indegree(v_i) and outdegree(v_i). Thus, overall, the algorithm examines only $O(n)$ entries of M.

High-Level Description:

- 1. Let $Current = 1$.
- 2. for $i = 2$ to n do // Eliminates nodes until only one candidate remains. if $(M[\text{Current}, i] = 1)$ then $\text{Current} = i$.
- 3. Compute the indegree α and the outdegree β of the node given by Current.
- 4. if $(\alpha = n 1 \text{ and } \beta = 0)$ then Output Current as the special node else Output "No special node".

Correctness of the Algorithm: This is a direct consequence of Lemma 2 and the discussion presented under "Idea".

Number of Probes Used: Step 2 of the algorithm uses $n-1$ probes of the matrix M. Step 3 probes at most 2n entries of M. Hence, the total number of probes of M is at most $3n - 1 = O(n)$.