
CSI 604 – Spring 2016

Solutions to Homework – VI

Problem 1:

Idea: Suppose the Graph G(V,E) has a spanning tree T such that each node in L is a leaf (i.e., a

node of degree 1). Thus, when the nodes in L are deleted from T , the remaining graph is a tree on the

set of nodes V −L. Further, for each node v ∈ L, there is a node w ∈ V −L such that the edge {v, w}
is in E. As the following lemma shows, these two conditions which are necessary for the existence of

such a spanning tree are also sufficient.

Lemma 1: Let G(V,E) be a connected undirected graph and let L be a subset of nodes. G has a

spanning tree in which all the nodes in L appear as leaves if and only if both of the following conditions

hold: (i) graph G′(V − L,E′) obtained from G by deleting the nodes in L (and the edges incident on

those nodes) is connected and (ii) for each node v ∈ L, there is a node w ∈ V − L such that the edge

{v, w} is in E.

Proof:

Part 1: Suppose G satisfies Conditions (i) and (ii) of Lemma 1. We can construct a spanning tree

T for G where all the nodes in L are leaves of T as follows. First construct a spanning tree T ′ for

G′(V − L,E′). (T ′ exists since G′ is connected.) For each node v ∈ L, by Condition (ii), there is a

node w ∈ V − L such that {v, w} is an edge of G. Thus, we can attach v to T ′ as a child of w, thus

ensuring that v is a leaf in the resulting spanning tree. We get the required spanning tree T after all

the nodes in L get attached to appropriate nodes of T ′.

Part 2: Suppose G has a spanning tree T such that each node in L is leaf in T . Thus, deleting the

nodes in L cannot disconnect the tree. Therefore, the graph G′(V − L,E′) has a spanning tree. In

other words, Condition (i) holds. The fact that each node v in L is a leaf in T points that the parent

w of v is a node in V − L; that is, {v, w} is an edge in G. Therefore, Condition (ii) also holds.

High-Level Description:

1. Construct graph G′(V − L,E′) by deleting from G the nodes in L and

the edges incident on those nodes.

2. if (G′ is not connected) then output “There is no solution” and stop.

3. Construct a minimum spanning tree T ′ for G′.

4. for each node v ∈ L do // Attach node v to T ′ using an edge of minimum cost.

(a) Find the subset Sv of V − L such that v is adjacent to each node w ∈ Sv in G.

(b) if (Sv is empty) then output “There is no solution” and stop.

(c) Find a node w ∈ Sv such that the weight of the edge {v, w} is a minimum over all the edges

between v and the nodes in Sv.

(d) Attach v as a child of w in T ′.

5. Output the spanning tree T that results at the end of Step 4.
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Proof of correctness: The fact that the above algorithm outputs a spanning tree T where every

node of L is a leaf if and only if such a tree exists is a direct consequence of Lemma 1. We now show

that among all the spanning trees of G in which the nodes in L appear as leaves, T has the smallest

cost.

Let T ∗ be an optimal spanning tree of G in which all the nodes in L appear as leaves. We can

divide the cost of T ∗ into two parts: (i) the cost C1(T
∗) of the spanning tree T ∗G′ for G′(V − L,E′)

and (ii) the total cost C2(T
∗) of the edges that attach each node of L to the spanning tree T ∗G′ .

Thus, C(T ∗) = C1(T
∗) + C2(T

∗). Define C1(T ) and C2(T ) for the spanning tree T for G′(V − L,E′)
constructed by the algorithm in an analogous manner. Note that the cost of T , denoted by C(T ), is

given by C(T ) = C1(T ) + C2(T ). Since the algorithm constructs a minimum spanning tree of G′, we

have C1(T ) ≤ C1(T
∗). Further, since Step 4(c) of the algorithm attaches each node v ∈ L to a node w

of the spanning tree of G′ such that the cost of the edge {v, w} is a minimum over all the edges between

v and the nodes in V − L, it follows that C2(T ) ≤ C2(T
∗). As a consequence, C(T ) = C1(T ) + C2(T )

≤ C1(T
∗) + C2(T

∗) = C(T ∗). Thus, the tree T produced by the algorithm is optimal.

Running Time Analysis: We will consider each step of the algorithm separately. We use the

standard notation that n = |V | and m = |E|.

Step 1: We can implement this step in time O(m log n) as follows. We first sort the nodes in L.

Since |L| ≤ n, this can be done in O(n log n) time. To construct the adjacency list for G′ from that

of G, we proceed as follows. For each node v ∈ V , if v ∈ L (which can be determined using binary

search in O(log n) time), we delete the adjacency list of v; otherwise, we go through the adjacency list

of v and delete each node x such that x appears in L. Thus, for each node v, this can be done in time

O(degree(v) log n). So, the total time for Step 1 is O(
∑

v∈V degree(v) log n) = O(m log n).

Step 2: Checking whether G′ is connected can be done in O(m + n) time using breadth-first or

depth-first search.

Step 3: Constructing a minimum spanning tree for G′ can be done using Kruskal’s or Prim’s algorithm

in O(m log n) time.

Step 4: To implement this step, we first sort the nodes in V −L. Since |V −L| ≤ n, the sorting step

can be done in O(n log n) time. Now, for each node v ∈ L, we can go through the adjacency list of v,

construct the set Sv (i.e., the set of nodes in V − L to which v is adjacent in G) using a binary search

of V − L. During this process, we can also find a node w such that the edge {v, w} has the minimum

cost (among all the edges between v and the nodes in Sv) in time O(degree(v) log n). So, the total time

for Step 4 is O(
∑

v∈L degree(v) log n) = O(m log n) (since L ⊆ V ).

Step 5: Since T has n nodes and n− 1 edges, Step 5 can be done in O(n) time.

By considering the times for Steps 1 through 5, it can be seen that the overall running time of the

algorithm is O(m log n).

Problem 2:

Terminology: In the implementation of Prim’s Algorithm discussed below, we use two queues, each

implemented as a doubly-linked list. We use the term ‘node’ to refer to an item in these lists. We use

the term ‘vertex’ to refer to a node of the given graph G(V,E). As usual, n = |V | and m = |E|.

Idea: Since there are only two possible edge weights (namely, 0 and 1), we don’t need a general

priority queue which may use O(log n) time for each Extract Min and Decrease Key operation.
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Instead, we use two queues, denoted by Q0 and Q1, with Q0 (Q1) containing vertices which have not

been added to the tree and whose current key values are 0 (1). If Q0 is non-empty, we remove a node

from Q0 and add the corresponding vertex to the current tree; otherwise, we remove a node from Q1

and add the corresponding vertex to the current tree. As noted below, each of these queue operations

can be implemented to run in O(1) time, and this leads to the desired running time of O(m+ n).

(a) Data structures used:

• Two doubly-linked lists Q0 and Q1. Each node in these lists has three fields: vertex-id (an

integer, indicating the corresponding vertex of the graph), previous and next (two pointers,

which point to the next and previous nodes of the corresponding list). Each node in Q0 (Q1)

represents a vertex whose current key value is 0 (1) and which has not yet been added to the

MST.

Note: We use doubly-linked lists for the following reason: given a pointer to a node in a doubly-

linked list, the node can be deleted from the list in O(1) time. Also, a node can be inserted into

a doubly-linked list in O(1) time.

• An array vertex-info of size n. Element vertex-info[i] of this array is a record containing the

following information about vertex vi of G (1 ≤ i ≤ n):

(i) key: The current key value of the vertex. (This value can only be 0, 1 or ∞.)

(ii) parent: A node u such that w(u, vi) is the key value of vi.

(iii) in-tree: A Boolean value indicating whether or not the vertex has been added to the MST.

(iv) pointer: The pointer to the node with vertex-id equal to i; This node may be in

Q0 or Q1.

Note: To keep the pseudocode description simple, we use key(v) to refer to the key value stored

in the record for vertex v. (A similar notation is used for the other fields of the record.)

• For each node u, its adjacency list is denoted by Adj[u] (as usual).

(b) Modified Pseudocode for Prim’s Algorithm:

Note: Let r be the (given) root vertex for the MST to be constructed. The variable mst-size

represents the number of vertices in the current tree.

1. for each vertex v do {

key(v) = infinity; parent(v) = NULL; in-tree(v) = false; pointer(v) = NULL;

}

2. Set key(r) = 0 and mst-size = 1.

3. (a) Create a node (of a doubly-linked list) with vertex-id set to r and

next and previous pointers set to NULL. Insert this node into list Q0.

(b) Initialize Q1 to empty.

3



4. while (mst-size < n) do {

(A) if (Q0 is not empty)

Remove the first node from Q0.

else

Remove the first node from Q1.

(B) Let u be the vertex-id stored in the node just removed.

Set in-tree(u) = true; mst-size++;

(C) for each vertex v in Adj[u] do {

if (in-tree(v) = false) { // No need to consider nodes already in the tree.

if (key(v) = infinity) { // key(v) will change to 0 or 1.

(i) key(v) = w(u,v); parent(v) = u;

(ii) Create a node (of a doubly-linked list) with

vertex-id set to v and previous and next pointers

set to NULL. Let pointer(v) point to this node.

(iii) if (key(v) = 0)

Insert the node created in Step 4(C)(ii) into Q0.

else

Insert the node created in Step 4(C)(ii) into Q1.

} // End of key(v) = infinity case.

else { // key(v) is 0 or 1.

if (key(v) = 1) { // Key value may change to 0.

if (w(u,v) = 0) {

(i) key(v) = 0; parent(v) = u;

(ii) Use pointer(v) to remove the node with

vertex-id = v from Q1 and insert it into Q0.

}

}

}

} // End of outermost if.

} // End of for loop (of Step 4(C)).

} // End of while loop (Step 4).

(c) Running time analysis: Step 1 runs in O(n) time. Steps 2 and 3 run in O(1) time. We analyze

Step 4 as follows.

• The while loop of Step 4 runs at most n times. For each iteration of this loop, Steps 4(A) and

4(B) run in O(1) time. So, over all the n iterations, Steps 4(A) and 4(B) use O(n) time.

• For each vertex u, Step 4(C) examines the adjacency list of u. For each node v in Adj[u], the

time used in Step 4(C) is O(1) since we can remove and insert a node from a doubly-linked list in

O(1) time. So, the time spent in Step 4(C) for each vertex u is O(degree(u)). Thus, over all the

iterations of the while loop of Step 4, the total time spent in Step 4(C) is O(
∑

u∈V degree(u)) =

O(m), since
∑

u∈V degree(u) = 2m.
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Thus the total time for Step 4 is O(m+n). Since this dominates the running time, the overall running

time of the algorithm is also O(m+ n).

Problem 3:

As defined in the problem, a special node in a directed graph D(V,A) is one whose indegree =

n−1 and whose outdegree = 0. (Recall that n = |V |.) We first show that each directed graph (without

self loops) has at most one special node.

Lemma 2: Each directed graph D(V,A) (without self loops) has at most one special node.

Proof: The proof is by contradiction. Suppose D(V,A) has two distinct special nodes v and w. If

there is an edge from v to w, then the outdegree of v is 1 and so v cannot be a special node. On the

other hand, if there is no edge from v to w, then the indegree of w is less than n− 1, and so w cannot

be a special node. We get a contradiction in each case and the lemma follows.

Idea: Initially, all nodes in V are candidates for the special node. Let M denote the adjacency matrix

of G. Consider any pair of nodes vi and vj and suppose we check the entry M [i, j].

(a) If M [i, j] = 0, then there is no edge from vi to vj ; thus, the indegree of vj will be less than n− 1.

Therefore, vj cannot be the special node.

(b) If M [i, j] = 1, then there is an edge from vi to vj ; thus, the outdegree of vi cannot be 0. Therefore,

vi cannot be the special node.

Hence, checking one entry of M allows us to eliminate one node from the set of candidates for the

special node. So, after n−1 checks of M , we can reduce the number of candidates to 1. If the remaining

candidate is node vi, then we can compute the indegree and outdegree of vi (by probing all the entries

of row i and column i of M) and determine whether or not vi is special. We need to check at most 2n

entries of M to compute indegree(vi) and outdegree(vi). Thus, overall, the algorithm examines only

O(n) entries of M .

High-Level Description:

1. Let Current = 1.

2. for i = 2 to n do // Eliminates nodes until only one candidate remains.

if (M [Current, i] = 1) then Current = i.

3. Compute the indegree α and the outdegree β of the node given by Current.

4. if (α = n− 1 and β = 0)

then Output Current as the special node

else Output “No special node”.

Correctness of the Algorithm: This is a direct consequence of Lemma 2 and the discussion

presented under “Idea”.

Number of Probes Used: Step 2 of the algorithm uses n−1 probes of the matrix M . Step 3 probes

at most 2n entries of M . Hence, the total number of probes of M is at most 3n− 1 = O(n).
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