k-Positivity of the Dual Canonical Basis

Sunita Chepuri (joint with Melissa Sherman-Bennett)

Northeast Women in Algebra and Combinatorics Conference Celebrating the 50th Anniversary of the Association for Women in Mathematics

November 20, 2021

Outline

Outline

- k-Positivity

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Example:
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6\end{array}\right]$

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Example:
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6\end{array}\right]$
The determinants of the 1×1 submatrices are the matrix entries, which are positive.

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Example:
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6\end{array}\right]$
The determinants of the 1×1 submatrices are the matrix entries, which are positive.
There are $\binom{3}{2}\binom{3}{2}=92 \times 2$ submatrices, all of which have positive determinant.

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Example:
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6\end{array}\right]$
The determinants of the 1×1 submatrices are the matrix entries, which are positive.
There are $\binom{3}{2}\binom{3}{2}=92 \times 2$ submatrices, all of which have positive determinant.
$\operatorname{det}(A)=2$

Total Positivity

Definition

A matrix is totally positive if all its square submatrices have positive determinant.

Example:
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6\end{array}\right]$
The determinants of the 1×1 submatrices are the matrix entries, which are positive.
There are $\binom{3}{2}\binom{3}{2}=92 \times 2$ submatrices, all of which have positive determinant.
$\operatorname{det}(A)=2$
So A is totally positive.

Total Positivity

Why study these matrices?

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)
- Led to development of cluster algebras (Fomin-Zelevinsky, 2002)

Total Positivity

Why study these matrices?

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)
- Led to development of cluster algebras (Fomin-Zelevinsky, 2002)
- Has nice topology (Hersh, 2013)

k-Positivity

Definition

A matrix is k-positive if all its square submatrices of size less than or equal to k have positive determinant.

k-Positivity

Definition

A matrix is k-positive if all its square submatrices of size less than or equal to k have positive determinant.

Example:
$M=\left[\begin{array}{cccc}22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6\end{array}\right]$

k-Positivity

Definition

A matrix is k-positive if all its square submatrices of size less than or equal to k have positive determinant.

Example:
$M=\left[\begin{array}{cccc}22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6\end{array}\right]$
The determinants of the 1×1 and 2×2 submatrices are positive, so M is 1 -positive and 2-positive.

k-Positivity

Definition

A matrix is k-positive if all its square submatrices of size less than or equal to k have positive determinant.

Example:
$M=\left[\begin{array}{cccc}22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6\end{array}\right]$
The determinants of the 1×1 and 2×2 submatrices are positive, so M is 1-positive and 2-positive.
$\left|M_{\{1,2,3\},\{1,2,3\}}\right|<0$, so M is not 3-positive or 4-positive (totally positive).

k-Positivity

Definition

A matrix is k-positive if all its square submatrices of size less than or equal to k have positive determinant.

Example:
$M=\left[\begin{array}{cccc}22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6\end{array}\right]$
The determinants of the 1×1 and 2×2 submatrices are positive, so M is 1-positive and 2-positive.
$\left|M_{\{1,2,3\},\{1,2,3\}}\right|<0$, so M is not 3-positive or 4-positive (totally positive). These matrices have many similar but slightly weaker properties to totally positive matrices.

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Dual Canonical Basis

Let G be a reductive group.

Dual Canonical Basis

Let G be a reductive group.
The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G.

Dual Canonical Basis

Let G be a reductive group.
The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G. Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.

Dual Canonical Basis

Let G be a reductive group.
The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G.
Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.
Fomin-Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called generalized minors are positive.

Dual Canonical Basis

Let G be a reductive group.
The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G.
Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.
Fomin-Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called generalized minors are positive.

Question

What if only a subset of the generalized minors are positive? What does this tell us about the positivity of the rest of the dual canonical basis elements?

Dual Canonical Basis

Let G be a reductive group.
The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G.
Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.
Fomin-Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called generalized minors are positive.

Question

What if only a subset of the generalized minors are positive? What does this tell us about the positivity of the rest of the dual canonical basis elements?

Our setting: $G=S L_{n}$, generalized minors are just minors, we require the set of minors of size less than or equal to k be positive.

Immanants

Let $X=\left(x_{i j}\right)$ be the matrix of indeterminates.

Definition

Given a function $f: S_{n} \rightarrow \mathbb{C}$, the immanant associated to f, $\operatorname{Imm}_{f}: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$, is the function

$$
\operatorname{Imm}_{f}(X):=\sum_{w \in S_{n}} f(w) x_{1, w(1)} \cdots x_{n, w(n)}
$$

Immanants

Let $X=\left(x_{i j}\right)$ be the matrix of indeterminates.

Definition

Given a function $f: S_{n} \rightarrow \mathbb{C}$, the immanant associated to f, $\operatorname{Imm}_{f}: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$, is the function

$$
\operatorname{Imm}_{f}(X):=\sum_{w \in S_{n}} f(w) x_{1, w(1)} \cdots x_{n, w(n)}
$$

Ex: If $f(w)=\operatorname{sgn}(w)$ for all $w \in S_{n}$, then $\operatorname{Imm}_{f}(X)=\operatorname{det}(x)$.

Immanants

Let $X=\left(x_{i j}\right)$ be the matrix of indeterminates.

Definition

Given a function $f: S_{n} \rightarrow \mathbb{C}$, the immanant associated to f, $\operatorname{Imm}_{f}: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$, is the function

$$
\operatorname{Imm}_{f}(X):=\sum_{w \in S_{n}} f(w) x_{1, w(1)} \cdots x_{n, w(n)}
$$

Ex: If $f(w)=\operatorname{sgn}(w)$ for all $w \in S_{n}$, then $\operatorname{Imm}_{f}(X)=\operatorname{det}(x)$.
Ex: If $f(w)=1$ for all $w \in S_{n}$, then $\operatorname{Imm}_{f}(X)=\operatorname{per}(X)$.

Immanants

Let $X=\left(x_{i j}\right)$ be the matrix of indeterminates.

Definition

Given a function $f: S_{n} \rightarrow \mathbb{C}$, the immanant associated to f, $\operatorname{Imm}_{f}: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$, is the function

$$
\operatorname{Imm}_{f}(X):=\sum_{w \in S_{n}} f(w) x_{1, w(1)} \cdots x_{n, w(n)}
$$

Ex: If $f(w)=\operatorname{sgn}(w)$ for all $w \in S_{n}$, then $\operatorname{Imm}_{f}(X)=\operatorname{det}(x)$.
Ex: If $f(w)=1$ for all $w \in S_{n}$, then $\operatorname{Imm}_{f}(X)=\operatorname{per}(X)$.
The most commonly studied immanants are irreducible character immanants ($f=\chi^{\lambda}$ an irreducible character of S_{n}).

Kazhdan-Lustzig Immanants

Definition

Let $v \in S_{n}$. The Kazhdan-Lusztig immanant indexed by v is

$$
\operatorname{Imm}_{v}(X):=\sum_{w \in S_{n}}(-1)^{\ell(w)-\ell(v)} P_{w_{0} w, w_{0} v}(1) x_{1, w(1)} \cdots x_{n, w(n)}
$$

where $P_{x, y}(q)$ is the Kazhdan-Lusztig polynomial associated to $x, y \in S_{n}$ and $w_{0} \in S_{n}$ is the longest permutation.

Row and Column Indices

Let $R=\left\{r_{1} \leq \cdots \leq r_{n}\right\}, C=\left\{c_{1} \leq \cdots \leq c_{n}\right\} \in\left(\begin{array}{c}\left.\left[\begin{array}{c}m \\ n\end{array}\right)\right) \text { where }\end{array}\right.$ $[m]:=\{1, \ldots, m\}$.

Row and Column Indices

Let $R=\left\{r_{1} \leq \cdots \leq r_{n}\right\}, C=\left\{c_{1} \leq \cdots \leq c_{n}\right\} \in\left(\binom{[m]}{n}\right)$ where $[m]:=\{1, \ldots, m\}$.
For an $m \times m$ matrix $M=\left(m_{i j}\right)$, we define $M(R, C)$ to be the matrix with element $m_{r_{i}, c_{j}}$ in row i, column j.

Row and Column Indices

Let $R=\left\{r_{1} \leq \cdots \leq r_{n}\right\}, C=\left\{c_{1} \leq \cdots \leq c_{n}\right\} \in\left(\binom{[m]}{n}\right)$ where $[m]:=\{1, \ldots, m\}$.
For an $m \times m$ matrix $M=\left(m_{i j}\right)$, we define $M(R, C)$ to be the matrix with element $m_{r_{i}, c_{j}}$ in row i, column j.
Example: Let $R=\{1,1,3\}, C=\{2,3,4\}$.
$M=\left[\begin{array}{cccc}22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6\end{array}\right], \quad M(R, C)=\left[\begin{array}{ccc}18 & 6 & 3 \\ 18 & 6 & 3 \\ 2 & 1 & 2\end{array}\right]$

Kazhdan-Lustzig Immanants and the Dual Canonical Basis

Theorem (Skandera, 2008)

The dual canonical basis of $\mathbb{C}\left[S L_{m}\right]$ consists of the nonzero elements of the set $\left\{\operatorname{lmm}_{v} X(R, C) \mid v \in S_{n}\right.$ for some $n \in \mathbb{N}$ and $\left.R, C \in\left(\binom{[m]}{n}\right)\right\}$.

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Ex: $w=25341$

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Ex: $w=25341$
Is w 321-avoiding?

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Ex: $w=25341$
Is w 321-avoiding?
No: w contains the subsequence 531 and $5>3>1$.

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Ex: $w=25341$
Is w 321-avoiding?
No: w contains the subsequence 531 and $5>3>1$.
Is w is 3412-avoiding?

Pattern Avoidance

Definition

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same order relations as v in one-line notation.

Ex: $w=25341$
Is w 321-avoiding?
No: w contains the subsequence 531 and $5>3>1$.
Is w is 3412-avoiding?
Yes: length 4 subsequences are 2534, 2531, 25341, 2541, 2341, 5341.

Main Theorem

Definition

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

Main Theorem

Definition

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

Theorem (C.-Sherman-Bennet, 2021)

Let $v \in S_{n}$ be 1324-, 2143-avoiding and suppose that for all $i<j$ with $v(i)<v(j)$ we have $j-i \leq k$ or $v(j)-v(i) \leq k$. Let $R, C \in\left(\binom{[m]}{n}\right)$. Then $\operatorname{Imm}_{v} X(R, C)$ is identically 0 or it is k-positive.

Main Theorem

Definition

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

Theorem (C.-Sherman-Bennet, 2021)

Let $v \in S_{n}$ be 1324-, 2143-avoiding and suppose that for all $i<j$ with $v(i)<v(j)$ we have $j-i \leq k$ or $v(j)-v(i) \leq k$. Let $\left.R, C \in\binom{[m]}{n}\right)$. Then $\operatorname{Imm}_{v} X(R, C)$ is identically 0 or it is k-positive.

Corollary (C.-Sherman-Bennet, 2021)

The elements of the dual canonical basis of $\mathbb{C}\left[S L_{m}\right]$ described above are k-positive.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{P}.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{P}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

Restriction of a Matrix to Γ_{P}

Definition

For $P \subseteq S_{n}$, define Γ_{P} to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $\left.M\right|_{\Gamma_{P}}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_{p}.

Ex: $w=2431, P=\left[w, w_{0}\right]=\{2431,3421,4231,4321\}$.

$$
\begin{aligned}
M & =\left[\begin{array}{cccc}
22 & 18 & 6 & 3 \\
8 & 7 & 3 & 2 \\
2 & 2 & 1 & 2 \\
1 & 2 & 2 & 6
\end{array}\right] \\
M \mid \Gamma_{\left[w, w_{0}\right]} & =\left[\begin{array}{cccc}
0 & 18 & 6 & 3 \\
0 & 7 & 3 & 2 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Proof Sketch

Proposition (C.-Sherman-Bennet, 2020)

If $v \in S_{n}$ is 1324-, 2143 -avoiding then

$$
\operatorname{Imm}_{v} X(R, C)=(-1)^{\ell(v)} \operatorname{det}\left(\left.X(R, C)\right|_{\left[w, w_{0}\right]}\right)
$$

Proof Sketch

Proposition (C.-Sherman-Bennet, 2020)

If $v \in S_{n}$ is 1324-, 2143 -avoiding then

$$
\operatorname{Imm}_{v} X(R, C)=(-1)^{\ell(v)} \operatorname{det}\left(\left.X(R, C)\right|_{\left[w, w_{0}\right]}\right)
$$

We then used Lewis Carroll's identity to do induction.

Outline

- k-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Future Work

- Extend result from 1324-, 2143-avoiding permutations to a larger class.

Future Work

- Extend result from 1324-, 2143-avoiding permutations to a larger class.
- Explore the relationship between these immanants and cluster algebras.

Thank you!

S. Chepuri and M. Sherman-Bennett, 1324- and 2143-avoiding Kazhdan-Lusztig immanants and k-positivity, Canadian Journal of Mathematics (2021), 1-33.
S. Chepuri and M. Sherman-Bennett, k-positivity of dual canonical basis elements from 1324-and 2143-avoiding Kazhdan-Lusztig immanants, preprint (2021), arXiv:2106.09150.

