NNSE 508 EM

Home assignment # 3

Due: February 24, 2014

1. For a normal incidence of plane monochromatic EM wave from a medium with impedance η_1 to a medium with impedance η_2 ,

a) write the wave phasors (electric and magnetic fields) for incident, transmitted and reflected waves. Note: pay specific attention to relationships between signs that can be obtained from Maxwell equations.

b) Applying boundary conditions show that reflection and transmission coefficients are as follows: $E_{1tan} = E_{2tan}$

2. Electromagnetic radiation loses intensity when it reflects from surfaces with roughness greater than the wavelength λ . Assuming you would like to use the lowest energy source possible, determine the frequencies of EM waves which would be appropriate to characterize

(a) cars on a road

(b) the presence of mountains

(c) micron-size voids in insulators

(d) atomic steps on a single crystal

and identify the types of EM waves present in each case (e.g. cosmic

waves, UV, visible, etc.)

4. The dispersion relationship for lattice vibrations is $\omega^2 = \frac{2K}{M} (1 - \cos ka)$, where *a* is the lattice constant, M is the atomic mass, and K is an effective interatomic interaction (spring) constant. Sketch the dispersion relationship and derive an expression for the group velocity.

5. Show that at low frequencies (f < 10^{13} Hz) the reflectivity and conductivity of metals

are related by Hugen-Rubens equation: $R = 1 - 4\sqrt{\frac{f}{\sigma}\pi\varepsilon_0}$. Confirm that at these

frequencies metals can be treated as "good conductors".

6. Assuming that in alkali metals each atom provides one free electron, find in all alkali metals:

a) electron density;

b) electron mean free path at 300K;

c) scattering time

Given:

UIVUI.					
Metal	Li	Na	Κ	Rb	Cs
Density, g/cm ³	0.525	0.961	0.850	1.52	1.89
Specific resistivity $\mu\Omega$ -cm	8.6	4.2	6.15	12.5	20