NNSE 508 EM

Home assignment # 5

Due: March 05, 2014

1. The effective densities of states in the conduction and valence bands of GaAs at room temperature are 4.7×10^{17} cm⁻³ and 7×10^{18} cm⁻³, respectively. The energy gap of GaAs is 1.42 eV.

(a) How many electrons do you expect to find in a one cm cube of undoped GaAs at room temperature? How many holes?

(b) What if the same GaAs cube is doped with shallow donors with concentration 10¹³ cm⁻³. How many electrons do you expect to find now? How many holes?

2. Consider a two-dimensional square metal crystal of lattice spacing a=3 Å, and one electron per unit cell. If the electrons are considered free within the two-dimensional plane,

a) Calculate the density of states for these electrons;

b) Calculate the Fermi energy E_F . (Provide a numerical value in eV relative to the bottom of the band.)

3. Calculate and plot the density of conduction band states for $10x10 \text{ nm}^2$ quantum wire. How many conduction band electrons exist in 1cm - long wire if Ef = 200 meV above the edge of the band. Effective mass of electron is 0.1 m₀.

4. A piece of non-uniformly doped silicon has a built-in electric field of 10^4 V/cm and an electron gradient (dn/dx) at x = 0 which equals -10^{20} cm⁻⁴. Assuming the semiconductor is in thermal equilibrium, calculate the electron and hole density as well as the hole gradient at x = 0. Use $\mu_n = 1000$ cm²/V-s and $\mu_p = 300$ cm²/V-s.

5. At room temperature oxygen is a paramagnetic gas with a molar susceptibility $4.33 \times 10^{-8} \text{ m}^2/\text{mol}$.

(a) Estimate the effective number of Bohr magnetons per molecule and

(b) show that it is consistent with two electrons in s-tates. [In the ground state of the oxygen molecule, the electron spins are coupled parallely to form the resultant S=1, and the electronic orbital angular momentum is zero]