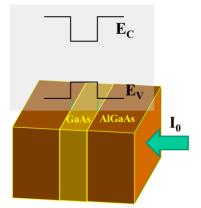
NENG 452

Home assignment # 7


Due: May 02, 2014

1. A heterostructure with a 6 nm thick GaAs quantum well (QW) as shown in the Figure is doped to have electron concentration of 10^{11} cm⁻² in the QW at room temperature. The sample is illuminated with infrared light (wavelength 0.78 µm, QW absorption coefficient $\alpha = 10^{4}$ cm⁻¹) with intensity I₀=100 W/cm², and there is no absorption in AlGaAs barriers and no reflection.

- (a) Find the position of the Fermi level (in eV) with respect to the edge of first conduction subband in equilibrium (no illumination),
- (b) Find the optical power (in W/cm²) absorbed by the sample.
- (c) Find the carrier lifetime if the conductance of the sample is increased by 5% under illumination. (Photoconductivity experiment).
- (d) Find separation between quasi-Fermi levels (in eV) under illumination.

Consider infinitely tall barriers.

Bulk GaAs parameters: $E_G=1.43 \text{ eV}$, $m_e^*=0.067 m_0$, $m_{hh}^*=0.5 m_0$, $\mu_e=6000 \text{ cm}^2/\text{Vs}$, $\mu_h=400 \text{ cm}^2/\text{Vs}$.

2. The saturation magnetization of iron is 1.75×10^6 A/m. Show that this corresponds to 2.22 Bohr magnetons per Fe atom. Density of iron is 7.87 g/cm³.

3. The susceptibility of FeCl₂ obeys the Curie–Weiss law over the temperature range 90 K to room temperature, with $T_C = 48$ K. Its molar susceptibility at room temperature is 1.475×10^{-2} emu/Oe/(g mol).

- (a) What is the effective magnetic moment in Bohr magnetons?
- (b) What are the spin-only values of J and μ_H (max)?

(c) At an applied field of 8000 Oe, what is the value of the molecular field at 0° C and at 100 $^{\circ}$ C?

4. At room temperature oxygen is a paramagnetic gas with a molar susceptibility 4.33×10^{-8} m²/mol.

(a) Estimate the effective number of Bohr magnetons per molecule and

(b) show that it is consistent with two electrons in s-states. [In the ground state of the oxygen molecule, the electron spins are coupled parallely to form the resultant S=1, and the electronic orbital angular momentum is zero].