Lecture contents

- Density of states
- Statistics
- Metals: transport

Density of states

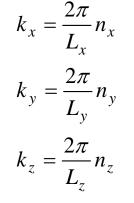
How to fill the states in almost free electron band structure ?

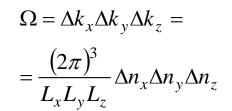
- 1. Calculate number of states per unit energy per unit volume
- 2. Use Pauli exclusion principle and distribution function to fill the bands
- Electrons are waves !
- Large 3D box (L is large, n is large) with Born-von Karman boundary Conditions:

 $\psi(x+L_x, y, z) = \psi(x, y, z)$ same for y and z

• Free electron approximation:

$$\psi = Ae^{\pm ikr}$$





0

 V_{θ}

V(x)

 L_x

• Number of states:

1D:
$$N = \frac{\Delta kL}{2\pi}$$
 2D: $N = \frac{\Sigma k}{(2\pi)^2}$

$$3\mathsf{D}: \quad N = \frac{\Omega V}{(2\pi)^3}$$

NNSE 508 EM Lecture #10

x

Density of states

$$N = \frac{\Omega V}{(2\pi)^3} \qquad E = V_0 + \frac{\hbar^2 k^2}{2m} \qquad k = \frac{1}{\hbar} [(2m)(E - V_0)]^{1/2} \qquad \Delta E = \frac{\hbar^2 k \Delta k}{m}$$

$$N(E) = \frac{1}{V} \frac{\Delta N}{\Delta E}$$
In the interval k to k+4k number of states :
$$N(E) = \frac{1}{V} \frac{\Delta N}{\Delta E}$$

$$N(E) = \frac{1}{V} \frac{\Delta N}{\Delta E}$$

$$M(E) = \frac{\sqrt{2}m^{3/2}}{\pi^2 \hbar^3} (E - V_0)^{1/2}$$

$$M(E) = \frac{\sqrt{2}m^{3/2}}{\pi^2 \hbar^3} (E - V_0)^{1/2}$$

$$M(E) = \frac{m}{\pi \hbar^2}$$

$$N(E) = \frac{\sqrt{2}m^{1/2}}{\pi \hbar} (E - V_0)^{-1/2}$$

$$M(E) = \frac{\sqrt{2}m^{1/2}}{\pi \hbar} (E - V_0)^{-1/2}$$

Density of states and dimensionality

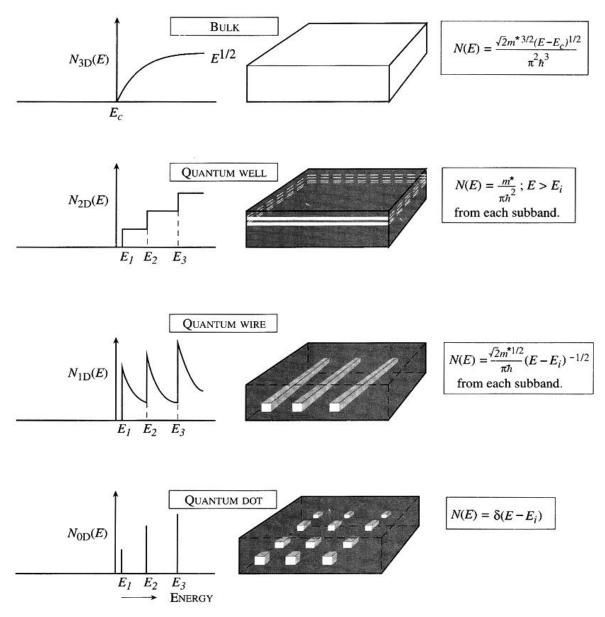


Figure 3.13: A schematic of how the density of states change as a function of dimensionality.

From Singh, 2003

Density of states in 3D and DOS effective mass

Effective mass density of states

Valence band density of states for Si (calculations)

2 Si Γ25' T25 0 La Energy [eV] \rightarrow -2 K_2 X_4 X_4 -4 Σ_1^{\min} K_1 r min -6 K_3 L_1 X_1 -8 K_1 -10 L_{2} Γ_1 2 -120 L X U,K Σ 1.2 0.8 0.4 ٨ Г Δ Г Density of states $k \rightarrow$ [states/eV atom]

3D density of states

$$N(E) = \frac{\sqrt{2}m^{*^{3/2}}}{\pi^2\hbar^3} \left(E - V_0\right)^{1/2}$$

Conduction band DOS mass in Γ point:

$$m_{dos}^* = m_c^*$$

Conduction band DOS mass in indirect gap semiconductors:

$$m_{dos}^* = \eta_c^{2/3} \left(m_1^* m_2^* m_3^* \right)^{1/3}$$

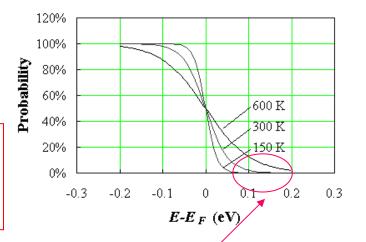
Valence band DOS mass :

$$m_{dos}^* = \left(m_{hh}^{*3/2} + m_{lh}^{*3/2}\right)^{2/3}$$

Filling the empty bands: Distribution function

- Electron concentration at the energy *E* (Density of states) x (distribution function):
- Pauli Exclusion Principle: No two electrons (fermions) can have identical quantum numbers.
- Electrons follow Fermi-Dirac statistics.
- Fermi-Dirac distribution function:

$$f_{FD}(E) = \frac{1}{\frac{E - E_F}{e^{\frac{E - E_F}{k_B T}}} + 1}$$



In the non-degenerate case (electron energies are far from E_F): Boltzmann distribution function may be used:

$$E - E_F >> k_B T$$

n(E) = N(E)f(E)

$$f_B(E) = e^{-(E - E_F)/k_B T}$$

Filling parabolic empty bands: Fermi energy

• Fermi energy is obtained by solving:

$$n = \int_{V_o}^{\infty} N(E) f(E) dE \approx \int_{V_o}^{E_F} N(E) dE$$

• if *n* is concentration of electrons in the band:

$$n = \frac{\sqrt{2m^{*3/2}}}{\pi^2 \hbar^3} \int_{V_0}^{E_F} (E - V_0)^{1/2} dE = \frac{2\sqrt{2m^{*3/2}}}{3\pi^2 \hbar^3} (E_F - V_0)^{3/2}$$
$$E_F = V_0 + \frac{\hbar^2}{2m^*} (3\pi^2 n)^{3/2}$$
case)
$$k_F = \frac{\hbar^2}{2m^*} (3\pi^2 n)^3$$
since
$$E_F = V_0 + \frac{\hbar^2 k_F^2}{2m^*} (2\pi^2 n)^3$$

• And Fermi surface (sphere in this case

• The Fermi energy is found:

for Na with $n = 2.65 \times 10^{22} \text{ cm}^{-3}$

$$E_F = V_0 + 3.22eV$$

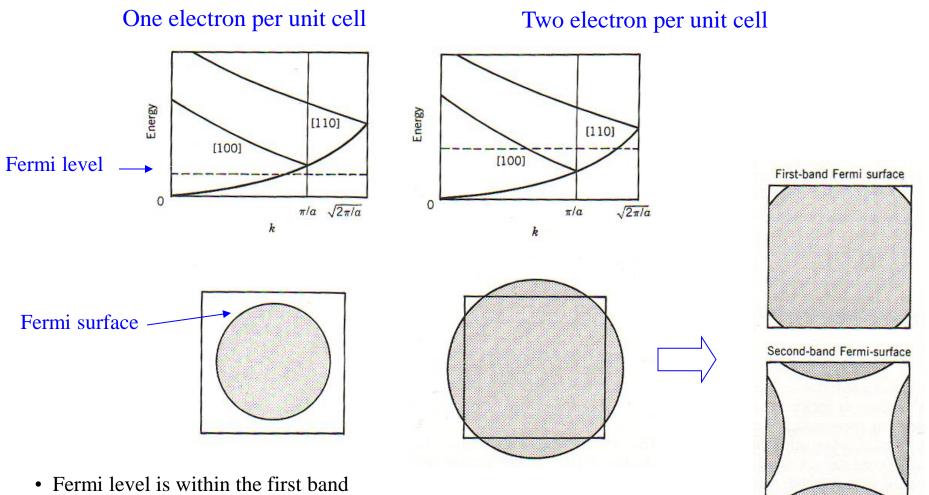
 $k_F = 0.92A^{-1}$
 $v_F = 1.10^8$ cm/s

• What is happening if the Fermi surface is not entirely within the Brillouin zone?

2m

If DOS changes slowly at $E_{\rm F}$

Nearly free electrons: Fermi surfaces in 2D (square crystal)



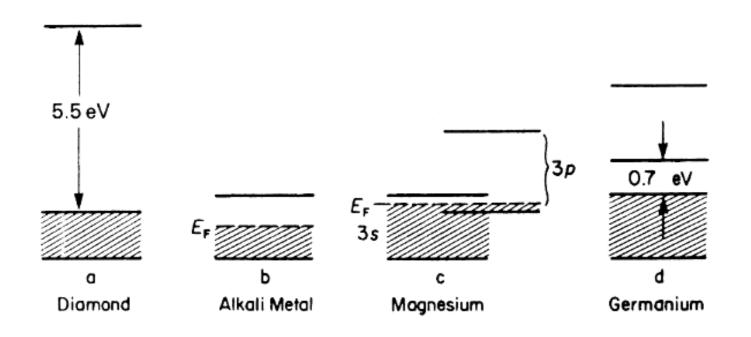
• Fermi level is in two bands

8

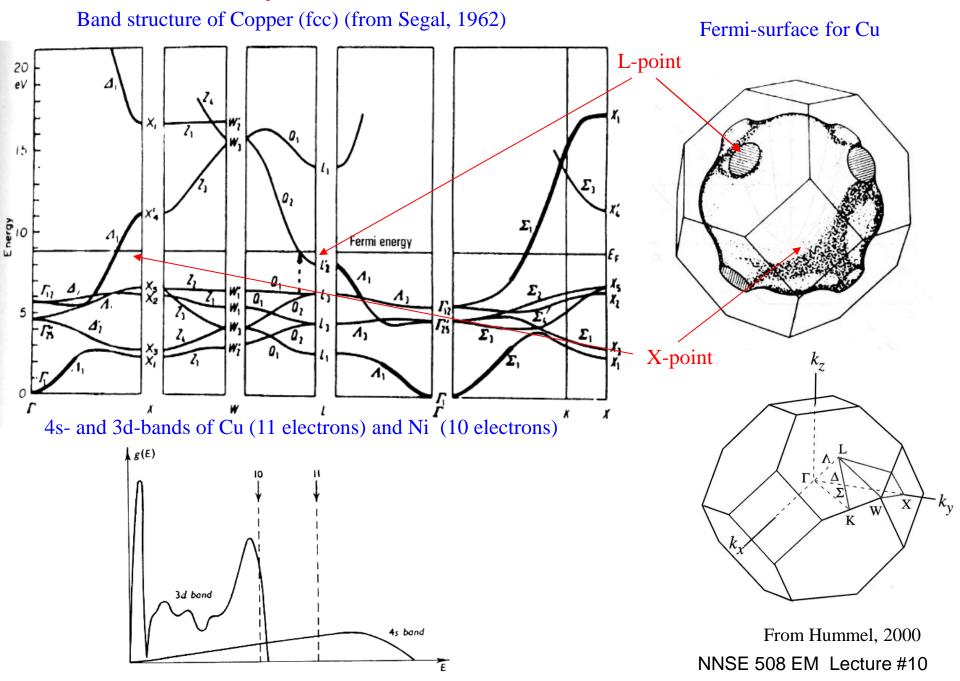
Consequences of band model: Metals, dielectrics and semiconductors

Pauli Exclusion Principle controls filling of the band structure

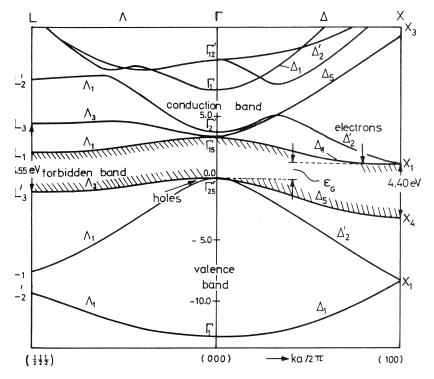
- Insulators highest filled band is completely occupied.
- Metals with one valence electron half band occupied
- Bivalent metals have s-p overlap bands partially occupied
- Semiconductors most common has intermixed s-p states with completely occupied one of the sp sub-bands

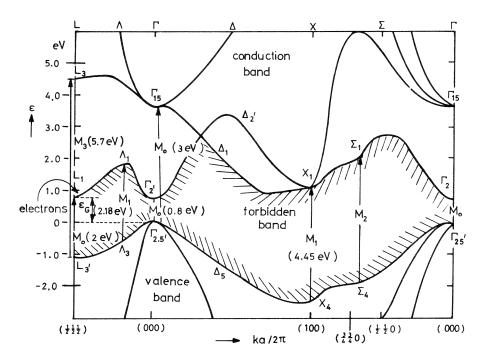


Nearly free electrons: band structure of Cu



Band-structures of Si and Ge: Fermi level is in the bandgap ! (in pure materials)

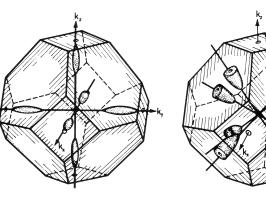




Energy band structure of germanium.

	m_ℓ^*	m_t^*	$ar{m}^*_{\ell h}$	$ar{m}^*_{hh}$
Si	0.92	0.19	0.16	0.52
Ge	1.59	0.082	0.043	0.34

From Seeger, 1973 NNSE 508 EM Lecture #10



Surfaces of constant energy in \vec{k} -space for the conduction band edge of silicon.

Surfaces of constant energy in R-space for the conduction band edge of germanium: 8 half-ellipsoids of revolution centered at L points on the zone boundary 11

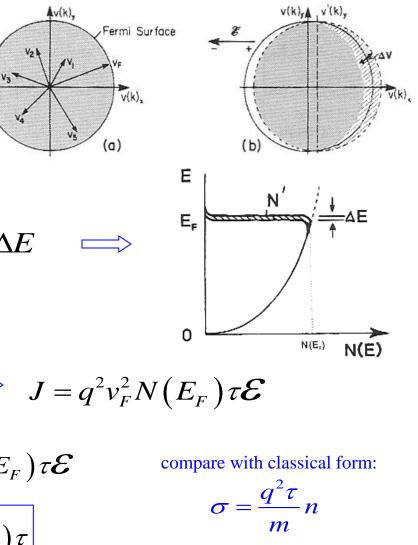
Conductivity of metals – Quantum mechanical considerations

- Let's consider parabolic band with minimum in the center of Brillouin zone.
- In metals the conduction band is filled up to Fermi energy (within kT):
- If electric field is applied, the distribution of velocities is displaced by drift velocity Δv .
- Only electrons close to Fermi surface participate in current transport.
- In one dimension:

compare with classical form:

- From definition of velocity
- And "drift" momentum
- If accurate 3D averaging is applied:
- Conductivity:

 $J = q v_F N(E_F) \Delta E$ $J_{class} = qnv_d$ $\Delta E = \hbar v_{\rm F} \Delta k$ $\Delta k = \frac{e\boldsymbol{\mathcal{E}}}{\hbar} \tau \quad \Longrightarrow \quad J = q^2 v_F^2 N(E_F) \tau \boldsymbol{\mathcal{E}}$ $J = \frac{1}{3}q^2 v_F^2 N(E_F) \tau \mathcal{E}$ $\sigma = \frac{1}{2} q^2 v_F^2 N(E_F) \tau$

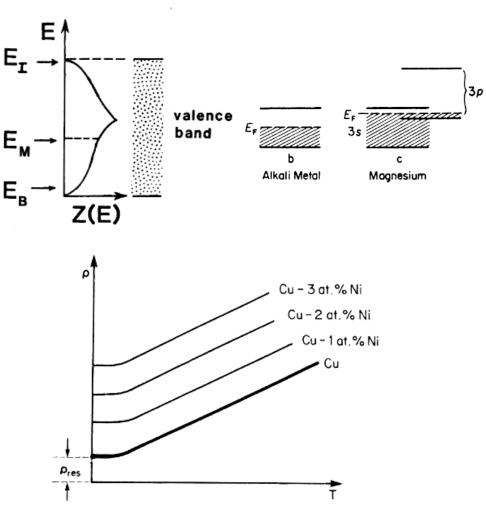


From Hummel, 2000 NNSE 508 EM Lecture #10

Conductivity of metals – examples

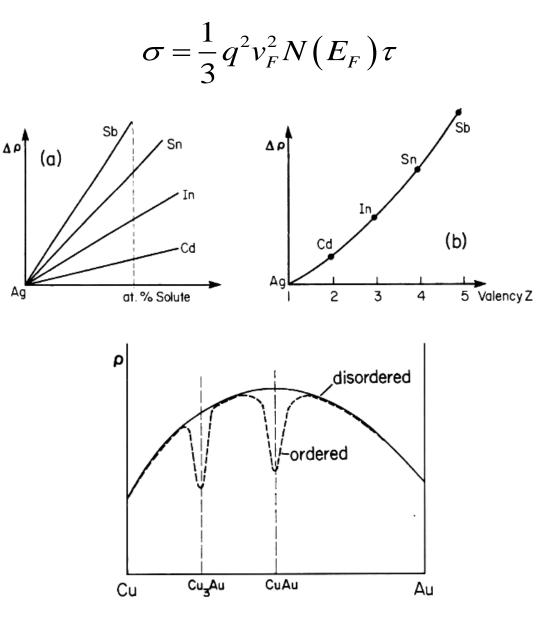
- Conductivity of metals depends mainly on scattering (quite expected) and density of states at Fermi level
- Conductivity is high in monovalent metals: Cu, Ag, Au
- Conductivity is lower in bivalent metals
- Conductivity can be controlled in semiconductors by filling the bands with doping
- In metals, temperature dependence of resistivity is linear (phonon scattering), reaching residual value at low temperatures (imperfections scattering).

$$\sigma = \frac{1}{3} q^2 v_F^2 N(E_F) \tau$$

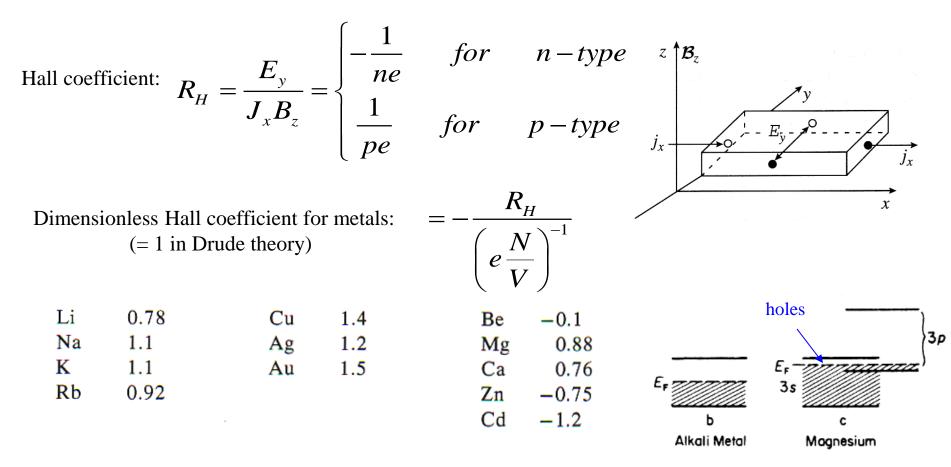


Conductivity of alloys – examples

- Resistivity of dilute single-phase alloys increases with the square of the valence difference (Linde's rule)
 - Scattering on local lattice imperfections and local charge differences
 - Shift of Fermi level position
- Usually resistivity has maximum at 50% solute content
- If ordered phase forms, the resistivity drops



Hall effect: carrier charge



Materials with >1 electrons per unit cell can have:

- Complex Fermi surface
- Fermi energies close to discontinuities in the E vs. k
- Almost full bands where the carriers behave as positively charged (holes)