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Lecture  contents  

• Density of states  

• Statistics 

• Metals: transport 
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2 Density of states 

How to fill the states in almost free electron band structure ?   

1. Calculate number of states per unit energy per unit volume 

2. Use Pauli exclusion principle and distribution function to fill the bands 
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• Electrons are waves ! 

 

• Large 3D box (L is large, n is large) with 

Born-von Karman boundary Conditions: 
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• Free electron approximation:  
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• Number of states:  
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3 
Density of states 
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In the interval k to k+k 

number of states :  
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In the interval E to E+dE number 

of states per unit “volume” (spin 

included):  
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4 Density of states and dimensionality 

From Singh, 2003  
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Density of states in 3D and DOS effective mass 

Valence band density of states for Si (calculations)  

Effective mass density of states  
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3D density of states  
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Conduction band DOS mass  in 

G point: 
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Conduction band DOS mass  in 

indirect gap semiconductors: 

Valence band DOS mass :   322/3*2/3**
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Filling the empty bands: Distribution function  

( ) ( ) ( )n E N E f E• Electron concentration at the energy E (Density of 

states) x (distribution function): 

 

• Pauli Exclusion Principle: No two electrons 

(fermions) can have identical quantum numbers. 

• Electrons follow Fermi-Dirac statistics. 

 

• Fermi-Dirac distribution function: 
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Filling parabolic empty bands: Fermi energy  

• Fermi energy is obtained by solving: 

 

 

•  if n is concentration of electrons in the band: 

 

 

 

 

• The Fermi energy is found: 

   

 

• And Fermi surface (sphere in this case) 

 

 

  for Na with   n = 2.65x1022 cm-3 

 

 

• What is happening if the Fermi surface is not 

entirely within the Brillouin zone? 
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8 Nearly free electrons: Fermi surfaces in 2D 

(square crystal) 

• Fermi level is within the first band  

One electron per unit cell Two electron per unit cell 

From Hummel, 2000 

Fermi level 

Fermi surface 

• Fermi level is in two bands  
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9 Consequences of band model: 

Metals, dielectrics and semiconductors 

Pauli Exclusion Principle controls filling of the band structure 

• Insulators –  highest filled band is completely occupied. 

• Metals with one valence electron – half band occupied  

• Bivalent metals – have s-p overlap – bands partially occupied 

• Semiconductors – most common has intermixed s-p states with completely occupied one 

of the sp sub-bands    
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10 Nearly free electrons: band structure of Cu 
Band structure of Copper (fcc) (from Segal, 1962) 

From Hummel, 2000 

Fermi-surface for Cu 

L-point 

X-point 

4s- and 3d-bands of Cu (11 electrons) and Ni  (10 electrons) 



NNSE 508 EM  Lecture #10      

11 

From Seeger, 1973 

Band-structures of Si and Ge: Fermi level is in the bandgap ! 

(in pure materials)    
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Conductivity of metals – Quantum mechanical considerations 

• Let’s consider parabolic band with minimum in the 

center of Brillouin zone.  

 

• In metals the conduction band is filled up to Fermi 

energy (within kT): 

 

• If electric field is applied, the distribution of velocities 

is displaced by drift velocity v. 

• Only electrons close to Fermi surface participate in 

current transport.  

 

• In one dimension:    

 

 compare with classical form: 

 

• From definition of velocity 

 

• And “drift” momentum  

 

 

• If accurate 3D averaging is applied:  

 

• Conductivity: 

From Hummel, 2000 
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13 

Conductivity of metals – examples 

From Hummel, 2000 

 2 21

3
F Fq v N E • Conductivity of metals depends mainly on 

scattering (quite expected) and density of 

states at Fermi level 

 

• Conductivity is high in monovalent metals: 

Cu, Ag, Au 

 

• Conductivity is lower in bivalent metals  

 

• Conductivity can be controlled in 

semiconductors by filling the bands with 

doping 

 

• In metals, temperature dependence of 

resistivity is linear (phonon scattering), 

reaching residual value at low temperatures 

(imperfections scattering).  
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14 

Conductivity of alloys – examples 

From Hummel, 2000 

 2 21
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• Resistivity of dilute single-phase 

alloys increases with the square of 

the valence difference (Linde’s rule) 

• Scattering on local lattice 

imperfections and local charge 

differences  

• Shift of Fermi level position 

 

• Usually resistivity has maximum at 

50% solute content 

 

• If ordered phase forms, the resistivity 

drops    
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Hall effect: carrier charge 
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Hall coefficient: 

Dimensionless Hall coefficient for metals: 

 (= 1 in Drude theory) 
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Materials with >1 electrons per unit cell can have: 

• Complex Fermi surface 

• Fermi energies close to discontinuities in the E vs. k 

• Almost full bands where the carriers behave as positively charged (holes) 

holes 


