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Lecture  contents  

• Magnetic properties 

• Diamagnetism 

• Band paramagnetism 

• Atomic paramagnetism 

• Ferromagnetism 

– Molecular field theory 

– Exchange interaction 
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• [SI] 

 

 

 

• M – magnetization or magnetic 

dipole density 

• Diamagnetic  ~  - 10-5 

• Paramagnetic  ~  +10-5 

• Ferromagnetic – spontaneous 

magnetization, large   

• … 

Magnetic properties of materials 

0 RB H

M H
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0B H M

From Cusack, 1963 
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• Orbiting electron creates magnetic dipole (circulating 

current) 

 

• In magnetic field, Lorentz’s force is added to centrifugal 

force  

 

• And corresponding change of rotational frequency 

 

• If change in orbital motion is small (        ) 

 

• The energy associated with this frequency is  

 

 

• The change in frequency can be associated with induced 

magnetic dipole moment:  

 

Diamagnetism (classical)  
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• Arises from Lentz’s law: when magnetic flux changes in a 

circuit, a current is induced which opposes the change of flux    

BLentz 

B= 0H 
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• Small magnetic field-induced magnetic dipole moment:  

 

• Now we can apply the result to spherical closed-shell atom 

• Averaging over 3D gives mean square radial distance 

• Sum over all Z electrons in the atom 

• Sum over all atoms in a unit volume, density N, to obtain 

magnetization  

 

• Finally susceptibility 

 

• All atoms and ions display diamagnetic response 

• Almost independent of temperature 

Diamagnetism (classical) contd.  

 

 

 

 

Larmor or Langevin diamagnetic 

susceptibility 

2 2

0
4

m

q R
H

m

2 23

2
R R

2 2 2x y R

2 2 2 21

3
x y z R

2
2

0
6

q ZN
M H R

m2
20

6

q ZNM
R

H m

From Burns, 1990 

• Molar susceptibility is often 

used to describe magnetism of 

atoms (should be multiplied by 

molar volume to obtain 

dimensionless susceptibility) 

Molar susceptibilities of some atoms and ions (x10-6 cm3/mole) 
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• Contrary to diamagnetism, paramagnetism arises 

from non-zero magnetic moments: 

• Free electron (Pauli) spin paramagnetism 

• Langevin atomic paramagnetism     

• An electron has an intrinsic magnetic dipole moment 

associated with its spin S, equal to Bohr magneton: 

  

 

• We can expect that the magnetic dipoles will rotate 

towards low-energy state 

   

• The fraction of electrons with magnetic moments 

parallel to magnetic field exceeds the anti-parallel 

fraction by 

 

• For n free electrons, the magnetization 

• But we need to take band structure into account ! 

 

Paramagnetism  
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Field alignment is weak ! 
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• In a band only a “thermal” 

fraction of electrons 

contributes to  

paramagnetism (compare 

to transport) 

 

• Magnetization 

 is ~100 times higher than observed in real materials 

 

Paramagnetism of free spins  
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• Magnetization is  

 

• Similar to transport, more accurate averaging 

over the distribution function gives susceptibility 

 

• For example, for Na 

In equilibrium 

 

In a magnetic field 
before the spins 

reorient 

 

Energy vs. 

density of states 
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• Similar to free spins, if an atom has a magnetic 

moment ,   it can align along the magnetic field 

• Magnetization of a material with atomic density N is 

(averaging included)  

 

 

• And susceptibility 

 

• Atom with orbital, spin and total angular momenta,  

L,S, and J = L+S , will have magnetic moment 

 

 

         With Lindé g-factor 

• Complications  

• Quantum mechanical averaging of mJ 

• Ions  

• Quenching of orbital momentum in the crystal field 

(Stark splitting of 2L+1 degeneracy )  

Langevin atomic paramagnetism 
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• Quantum mechanical averaging over (2J+1)   

projections 

 

 

 

• With Brillouin function: 

 

 

 

 

• If magnetic energy is small compared to thermal 

energy, y << 1 , Brillouin function gives  

 

 

• This results in classic susceptibility 

 

   with quantum averaged  

 Atomic paramagnetism - Quantum theory 
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Magnetic moments of ions 

 

 

 

 

From Burns, 1990 

Values of magnetic moments of 4f and 3d ions in 

insulating compounds 

2 1S

JL

Ground states of ions predicted by Hund’s rules 
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• Spontaneous magnetization occurs in some 

(Ferromagnetic) materials composed of  

atoms  with unfilled shells 

• For some reason magnetic moments are 

aligned even at relatively high temperature 

 

• Hypothesis: magnetic order is due to strong 

local magnetic field  (Weiss effective field) 

at the site of each dipole 

 

  with a constant 

• Consider a collection of N identical atoms 

per unit volume, with total angular 

momentum J, and use QM treatment of 

atomic paramagnetism  

 

 

 

Ferromagnetism – Molecular field theory  

 

 

 

 

Values of Curie temperatures and spontaneous 

magnetism (at 0 K in Gauss) for a few 

ferromagnetic materials  

From Burns, 1990 
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• Now let’s find the spontaneous 

magnetization (Ba = 0) 

 

 

Solving equation against y : 

 

 

 

• Depending on temperature spontaneous 

magnetization can be either M=0 or finite   

• At low y  

 

We can find critical Curie temperature: 

Ferromagnetism – Molecular field theory  

 

 

 

 

Solution of equation with Brillouin function  

From Burns, 1990 
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• At temperatures T > Tc , there is no 

spontaneous magnetization, and we can find 

temperature dependence of magnetizatiob  

(Ba > 0) 

 

 

• Solving for M:    

 

 

• Then susceptibility of ferromagnet in 

paramagnetic region  

 

• Some estimation for iron:  

 

 

 

Ferromagnetism – Molecular field theory  

 

 

 

 

From Burns, 1990 
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• What is the reason for so high local 

magnetic field ? – Exchange interaction  

• Consider two electrons on two atoms. We 

need to find the energy difference = 

exchange integral Jex) : 

 

• Their wavefunction is antisymmetric due to 

Pauli exclusion principle 

• Usually the interaction between the space 

and spin parts is small, and the variables 

can be separated : 

• Antiparallel spins give antisymmetric spin 

wavefunction, etc. 

• We can construct wavefunctions for singlet 

and triplet states with correct symmetry:  

 

 

Ferromagnetism – Heisenberg exchange interaction  
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• The energy shift of singlet and triplet states can 

be calculated from perturbation theory: 

 

 

 

 

 

• The energy difference between the singlet and 

triplet states 

 

 

 

 

 

• At small a-b distance 

• At large a-b distance 

•  BTW if the electrons are on the same atom, the 

ion interaction change is zero,     and 

antiparallel spins are favorable  = Hund’s rule 

Ferromagnetism – Heisenberg exchange interaction-contd  
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• Exchange interaction can be ferromagnetic 

or antiferromagnetic depending on 

interatomic distance 

• Exchange interaction is electrostatic 

(strong) in nature 

• To correlate it with molecular field theory, 

we can write:    

 

 

 

 

 

• For Fe:  

 

• Electrostatic interaction easily accounts for 

this value  

Ferromagnetism – Heisenberg exchange interaction contd. 

 

 

 

 

Exchange integral vs. interatomic distance 

rd – average radius of 4d electron    

From Christman, 1988 
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• Energy is minimized by ordering spins into “domains”  

• Net moment, M, would cause external field, 

increase energy 

• Magnetic domains cancel so that M = 0  

• Natural ferromagnetism does not produce net 

magnetic field  

• To magnetize a ferromagnet, impose H 

• Domain walls move to align M and H  

• Defects impede domain wall motion  

• Magnetization (Mr) retained when H removed  

 

• Magnetic properties  

Ms = saturation magnetization  (All spins aligned with field) 

Mr = remanent magnetization (Useful moment of permanent 

magnet)  

Hc = coercive force (Field required to “erase” moment)  

Area inside curve = magnetic hysteresis (Governs energy 

lost in magnetic cycle) 

Ferromagnetic materials 

 

 

 

 

Ferromagnetic material is always 

locally saturated 

Hysteresis loop of a ferromagnetic 

material  
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• High temperature: 

- Spins disordered ⇒ paramagnetism 

 

• Low Temperature (T < Tc) 

- Spins align = ferromagnetism 

• Elements: Fe, Ni, Co, Gd, Dy 

• Alloys and compounds: AlNiCo, FeCrCo, 

SmCo5, Fe14Nd2B 

- Like spins alternate = antiferromagnetism 

(RbMnF3) 

- Unlike spins alternate = ferrimagnetism 

• Compounds: Fe3O4 (lodestone, magnetite), 

CrO3, SrFe2O3, other ferrites and garnets 

 

 

 

Core magnetism – materials with 

spontaneously ordered magnetic dipoles  
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• Superexchange (transition metal oxides) 

• Can be ferromagnetic or anfiferromagnetic 

depending upon the energy of delocalization 

of the p-electrons on M1 and M2  

• Ordering temperature up to 900 K in ferrites 

(NiFe2O4  -  863 K)  

• Sign mostly negative, though ferromagnetics 

are known: EuO (Tc=69K)  or CrBr3 (Tc=37K) 

 

• RKKY interaction (Ruderman-Kittel-Kasuya- 

Yosida) - Indirect exchange over relatively large 

distances trough spin of conduction electrons (4f 

metals) 

• Interaction oscillates with (kFR), Fermi 

wavevector determines the wavelength of 

oscillations 

• The interaction is of the same order for all rare 

earths, but ordering temperatures vary due to 

magnetic moment: 19K  for Nd, 289 K for Gd) 

 

Other types of exchange interaction  

 

 

 

 

Mn – O - Mn 

RKKY interaction 

kFR 
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• Magnetic induction field is the same in a 

 

 

 

 

Magnetic materils 

 

 

 

 

From Goldberg, 2006 
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Magnetic units  

From Tremolet de Lacheisserie, 2005 
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Physical constants 

From Tremolet de Lacheisserie, 2005 


