Lecture contents

- Magnetic properties
- Diamagnetism
- Band paramagnetism
- Atomic paramagnetism
- Ferromagnetism
 - Molecular field theory
 - Exchange interaction

1

Magnetic properties of materials

• [SI]
$$\begin{cases} \vec{B} = \mu_0 \quad \vec{H} + \vec{M} \\ \vec{B} = \mu_0 \mu_R \vec{H} \\ \vec{M} = \chi \vec{H} \\ \mu_R = 1 + \chi \end{cases}$$

- M magnetization or magnetic dipole density
- Diamagnetic χ ~ 10⁻⁵
- Paramagnetic $\chi \sim +10^{-5}$
- Ferromagnetic spontaneous magnetization, large χ

Material	χ_M (dim'less)
Bi	-1.6×10^{-4}
Ag	-2.4×10^{-5}
H ₂ O	-9.0×10^{-6}
Nb $(4K)$	-1
Na	8.5×10^{-6}
Al	2.1×10^{-5}
Pt	2.8×10^{-4}
Gd	0.48
Fe (annealed)	20,000
$NdFe_{14}B$	~ 0

Diamagnetism (classical)

Diamagnetism (classical) contd.

- Small magnetic field-induced magnetic dipole moment:
- · Now we can apply the result to spherical closed-shell atom
 - Averaging over 3D gives mean square radial distance
 - Sum over all Z electrons in the atom
 - Sum over all atoms in a unit volume, density N, to obtain magnetization
 - Finally susceptibility

$$\chi = \frac{M}{H} = -\frac{q^2 Z N \mu_0}{6m} \langle R^2 \rangle$$

$$\mu_m = -\frac{q^2 R^2}{4m} \mu_0 H$$

$$\left\langle R^{2} \right\rangle = \frac{3}{2} R^{2} \quad \begin{cases} \left\langle x^{2} \right\rangle + \left\langle y^{2} \right\rangle = R^{2} \\ \left\langle x^{2} \right\rangle = \left\langle y^{2} \right\rangle = \left\langle z^{2} \right\rangle = \frac{1}{3} \left\langle R^{2} \right\rangle \end{cases}$$

$$M = -\frac{q^2 Z N}{6m} \mu_0 H \left\langle R^2 \right\rangle$$

Larmor or Langevin diamagnetic susceptibility

- All atoms and ions display diamagnetic response
- Almost independent of temperature

Molar susceptibilities of some atoms and ions ($x10^{-6}$ cm³/mole)

 Molar susceptibility is often used to describe magnetism of atoms (should be multiplied by molar volume to obtain dimensionless susceptibility)

Ion	$\chi_{\mathbf{M}}$	Atom	$\chi_{\mathbf{M}}$	lon	$\chi_{\mathbf{M}}$
		He	-1.9	Li+	-0.7
F-	-9.4	Ne	-7.2	Na+	-6.1
Cl-	-24.2	А	-19.4	K+	-14.6
Br−	-34.5	Kr	-28	Rb+	-22.0
I-	-50.6	Xe	-43	Cs+	-35.1

From Burns, 1990

Paramagnetism

- Contrary to diamagnetism, paramagnetism arises from non-zero magnetic moments:
 - Free electron (Pauli) spin paramagnetism
 - Langevin atomic paramagnetism
- An electron has an intrinsic magnetic dipole moment associated with its spin S, equal to Bohr magneton:

- We can expect that the magnetic dipoles will rotate towards low-energy state $(U = from \vec{\mu} \cdot \vec{B} \ to \ + \vec{\mu} \cdot \vec{B})$
- The fraction of electrons with magnetic moments parallel to magnetic field exceeds the anti-parallel fraction by $\approx \frac{\mu_B \mu_0 H}{k_B T}$
- For *n* free electrons, the magnetization
- But we need to take band structure into account !

$$= 2.0023$$

$$\int \frac{1}{\sqrt{q}} = -\frac{\hbar}{2}$$

$$\int \frac{q}{2m} \vec{S}$$

$$\mu_{B} = \frac{q\hbar}{2m} = 9.274 \cdot 10^{-24} \left\{ \frac{J}{T} \right\} = A \cdot m^{2}$$

For B =1 T (H = 8x10⁵ A/m) $U = \mu_B B = 58 \ \mu eV \rightarrow 0.67 \text{ K}$

Field alignment is weak !

 $M \approx n\mu_B \frac{\mu_B \mu_0 H}{k_T}$

Paramagnetism of free spins

Magnetization

 $M \approx n\mu_B \frac{\mu_B \mu_0 H}{k_B T}$

is ~100 times higher than observed in real materials

• In a band only a "thermal" fraction of electrons contributes to paramagnetism (compare to transport) $\approx \frac{k_B T}{E_F}$

Magnetization is

$$M \approx n\mu_B \frac{\mu_B \mu_0}{k_B T_F} H$$

 Similar to transport, more accurate averaging over the distribution function gives susceptibility

• For example, for Na $\chi = -8.4 \cdot 10^{-6}$

$$\chi = \frac{3\mu_0}{2} \frac{n\mu_B^2}{k_B T_F}$$

From Burns, 1990

Langevin atomic paramagnetism

- Similar to free spins, if an atom has a magnetic $\mu_{\scriptscriptstyle eff}$, it can align along the magnetic field moment
- Magnetization of a material with atomic density N is (averaging included) $M = \frac{1}{3} N \mu_{eff} \frac{\mu_{eff} \mu_0 H}{k_{-}T}$

• And susceptibility

$$\chi = \frac{\mu_0}{3} \frac{N \mu_{eff}^2}{k_B T}$$

 $\left| \chi = \frac{C}{T} \right|$ Curie law for paramagnetics With Curie constant

• Atom with orbital, spin and total angular momenta, L,S, and J = L + S, will have magnetic moment

$$\mu_{eff} = g_J \mu_B J$$

 $\left[=\mu_B \left\langle L+2S \right\rangle\right] = 2\ 0023$

$$g_J = 1 + \frac{J^2 + S^2 - L^2}{2J^2}$$

- Complications
 - Quantum mechanical averaging of m₁
 - lons
 - Quenching of orbital momentum in the crystal field (Stark splitting of 2L+1 degeneracy)

Atomic paramagnetism - Quantum theory

- Magnetic moment vs. H/T Quantum mechanical averaging over (2J+1) M_{sat} $S = 7/2(Gd^3)$ projections $S = 5/2(Fe^{3+})$ 6.00 $M = N \frac{\sum_{J=J}^{+J} g_J \mu_B m_J e^{\frac{g_J \mu_B m_J B}{k_B T}}}{\sum_{J=0}^{+J} e^{\frac{g_J \mu_B m_J B}{k_B T}}} \equiv N g_J \mu_B J B_J \quad y \equiv N \mu_{eff} B_J \quad y$ M/μ^B per ion 4 • With Brillouin function: $S = 3/2(Cr^{3+})$ 3.00 $B_J(y) = \frac{2J+1}{2I} \operatorname{coth}\left(\frac{2J+1}{2I}y\right) - \frac{1}{2I} \operatorname{coth}\left(\frac{y}{2I}\right)$ • 1.30 °K 2.00 ▲ 2.00 °K × 3.00 °K 1.00 □ 4.21 °K with $y = \frac{\mu_{eff}B}{k_{B}T} = \frac{g_{J}\mu_{B}JB}{k_{B}T}$ Brillouin funct. 0.00 20 30 10 40 H/T in Oe $^{\circ}K^{-1}$ If magnetic energy is small compared to thermal energy, y << 1, Brillouin function gives $B_J(y \ll 1) \approx y \frac{J+1}{2J}$ • This results in classic susceptibility $\chi = \frac{\mu_0}{3} \frac{N \mu_{eff}^2}{k_T}$
 - with quantum averaged $\mu_{e\!f\!f}^2 = g_J \mu_B^2 J(J+1)$

Magnetic moments of ions

														11	isulating C	ompound)	
f-sh	ell (l	= 3)						25	$^{+1}L_{I}$			Ion	∕ f n	State	$\mu_{\rm eff}/\mu_{\rm B}$	$\mu_{\rm eff}/\mu_{\rm B}$	
n	$m_{\ell}=3$, 2,	1, (0, –	1,-	2,-:	3 S	$L = \Sigma m$	ι _θ J	Ű	gj		1011	<u>+1</u>	State	<u>(Calc.)</u>	<u>(Exp.)</u>	
												- 1.	La ³⁺	4f ⁰	¹ S ₀	0	0	
0							0	0	0	¹ S ₀ 2E	0	La^{3+}	Ce ³⁺	4f ¹	${}^{2}\mathrm{F}_{5/2}$	2.54	2.4	
2	1	Ŧ					1/2	5	4	⁻ ⁻ ^{5/2} ³ H.	4/5	Pr^{3+}	Pr ³⁺	4f ²	³ H ₄	3.58	3.5	
3	÷	÷	ŧ				3/2	6	9/2	${}^{4}I_{9/2}$	8/11	Nd ³⁺	Nd ³⁺	4f ³	⁴ I _{9/2}	3.62	3.5	
4	ŧ	ŧ	ŧ	ł			2	6	4	⁵ I ₄	3/5	Pm ³⁺	Pm ³⁺	4f ⁴	⁵ I ₄	2.68	-	
5	+	+	+	• •			5/2	5	5/2	⁶ H _{5/2}	2/7	Sm ³⁺	Sm ³⁺	4f ⁵	${}^{6}\text{H}_{5/2}$	0.84	1.5	
6 7	*	*	*	• •	1	T	3	3	0 7/2	ν μ ₀ 85	2	Eu^{3+} Gd ³⁺	Eu ³⁺	4f ⁶	$^{7}F_{0}$	0	3.4	
8		ŧ	+	+ +	ŧ	ŧ	3	3	6	${}^{7}F_{6}$	$\frac{2}{3/2}$	Tb ³⁺	Gd ³⁺	4f ⁷	⁸ S _{7/2}	7.94	8.0	
9	֠	ŧŧ	+	+ +	ŧ	ŧ	5/2	5	15/2	6H15/2	4/3	Dg ³⁺	Tb ³⁺	4f ⁸	${}^{7}F_{6}$	9.72	9.5	
10	++	++	+ † ·	t t	+	+	2	6	8	⁵ I ₈	5/4	Ho^{3+}	Dy ³⁺	4f ⁹	6H15/2	10.63	10.6	
11	+1	+† 	+1	01 1 LA L	, †	1	3/2	6	16/2	Ч _{15/2} 3ц	6/5	Er^{3+}	Ho ³⁺	$4f^{10}$	⁵ I° ₁ 2	10.60	10.4	
13	¥1	¥†	++ -	i +	 † ∔†	÷	1/2	3	7/2	${}^{2}F_{7/2}$	8/7	Yb ³⁺	Er ³⁺	$4f^{11}$	4115/2	9.59	9.5	
14	֠	ŧŧ	++ -	+ +	t +t	֠	0	0	0	¹ S ₀ ^{1/2}	0	Lu ³⁺	Tm ³⁺	4f ¹²	$^{-13/2}$	7.57	7.3	
												<u> </u>	Yb ³⁺	4f ¹³	${}^{2}\mathrm{F}_{7/2}^{0}$	4.54	4.5	
d-sl	nell (<i>l</i>	= 2	2)													$\mu_{\rm eff}/\mu_{\rm B}$	$\mu_{\rm eff}/\mu_{\rm B}$	$\mu_{\rm eff}/\mu_{\rm B}$
n	m /=	2.1.	0.	-1	. –2		SL	$z = \Sigma m_{\ell} $	J				Ion	<u>3d</u> ⁿ	State	(CalcJ)	(CalcJ=S)	<u>(Exp.)</u>
								. ,					Ti^{3+}, V^{4+}	3d1	$^{2}D_{2}/_{2}$	1.55	1.73	1.8
1	ŧ						1/2	2	3/2	$^{2}D_{3/2}$	Т	3+	V ³⁺	3d ²	${}^{3}F_{2}^{3/2}$	1.63	2.83	2.8
2	ŧ	ŧ					1	3	2	${}^{3}F_{2}$	v	3+	Cr^{3+}, V^{2+}	3d ³	${}^{4}F_{2/2}^{2}$	0.77	3.87	3.8
3	•	+	+				3/2	3	3/2	⁴ F _{3/2}	C	r ³⁺	Mn^{3+}, Cr^{2+}	3d ⁴	${}^{5}D_{0}^{5/2}$	0	4.90	4.9
4	* 1	* 1	1	1	T		2 5/2	2	0 5/2	6 S	E E	n^{2+}	Fe^{3+} , Mn^{2+}	3d ⁵	6S5/2	5.92	5.92	5.9
6	֠	ŧ	ŧ	ŧ	ŧ		2	2	4	⁶ D ₄	F	e ² +	Fe ²⁺	3d ⁶	⁵ D ₄	6.70	4.90	5.4
7	¥†	¥†	ŧ	ŧ	ŧ		3/2	3	9/2	${}^{4}F_{9/2}$	С	o ²⁺	Co^{2+}	3d ⁷	$4F_{0/2}$	6.63	3.87	4.8
8	+t	+t	ŧŧ	t	ŧ		1	3	4	${}^{3}F_{4}$	N	i ²⁺	Ni ²⁺	3d ⁸	$^{3}F_{4}$	5.59	2.83	3.2
9	+t	++	++	++	†		1/2	2	5/2	$^{2}D_{5/2}$	С	u²+	Cu ²⁺	3d ⁹	$^{2}D_{5}/_{2}$	3.55	1.73	1.9
10	•T	•1	▼T	¥7	•T		0	0	0	· 30					5/2			

Ground states of ions predicted by Hund's rules Values of i

Values of magnetic moments of 4f and 3d ions in insulating compounds

From Burns, 1990

Ferromagnetism – Molecular field theory

- Spontaneous magnetization occurs in some (Ferromagnetic) materials composed of atoms with unfilled shells
- For some reason magnetic moments are aligned even at relatively high temperature
- <u>Hypothesis</u>: magnetic order is due to strong local magnetic field (Weiss effective field) at the site of each dipole

$$B_{loc} = B_a + \mu_0 \gamma M$$

with a constant γ

 Consider a collection of N identical atoms per unit volume, with total angular momentum *J*, and use QM treatment of atomic paramagnetism

$$M = M_{sat}B_J \quad y \qquad M_{sat} = N\mu_{eff}$$

with
$$y = \frac{\mu_{eff} B_{loc}}{k_B T} \equiv \frac{\mu_{eff} B_a + \mu_0 \gamma M}{k_B T} = \frac{g_J \mu_B J B_a + \mu_0 \gamma M}{k_B T}$$

Values of Curie temperatures and spontaneous magnetism (at 0 K in Gauss) for a few ferromagnetic materials

(a)	Mat.	$T_c(^{\circ}K)$	M _s	Mat.	T _c (°K)	M _s
	Fe	1043	1752	CrBr ₃	37	270
	Co	1388	1446	Au ₂ MnAl	200	323
	Ni	627	510	Cu ₂ MnAl	630	726
	Gd	293	1980	$\overline{Cu_2}MnIn$	500	613
	Dy	85	3000	MnĂs	318	870
	EuO	77	1910	MnBi	670	675
	EuS	16.5	1184	GdCl ₃	2.2	550
(b)	Mat.	T _N (°I	K)	Mat.	T _N (°I	ζ)
	MnO	122		KCoFe	125	
	FeO	198		MnF ₂	67	34
	CoO	291		FeEo	78.4	4
	NiO	600		CoF	37.	7
	RbMnF ₂	54.	5	MnCl	2	
	KFeF ₂	115	-	VS	1040	
	KMnF ₃	88.	3	Cr	311	
(c)	Mat.	T _c (°K)	M _s	Mat.	T _c (°K)	M _s
	Fe ₂ O ₄	858	510	CuFe ₂ O ₄	728	160
	CoFe ₂ O ₄	793	475	MnFe ₂ O ₄	573	560
	$NiFe_2O_4$	858	300	$Y_3Fe_5O_{12}$	560	195

From Burns, 1990

Ferromagnetism – Molecular field theory

• Now let's find the spontaneous magnetization ($B_a = 0$)

$$M = M_{sat}B_J$$
 y with $y = \frac{\mu_{eff}\mu_0\gamma M}{k_BT}$

Solving equation against *y* :

$$y \frac{k_B T}{\mu_{eff} \mu_0 \gamma M_{sat}} = B_J \quad y$$

- Depending on temperature spontaneous magnetization can be either M=0 or finite
- At low y $B_J(y \ll 1) \approx y \frac{J+1}{3J}$

We can find critical Curie temperature:

$$\frac{k_B T_C}{\mu_{eff} \,\mu_0 \gamma M_{sat}} = \frac{J+1}{3J}$$

$$T_C = \frac{N\mu_0\gamma}{3k_B} g_J\mu_B^2 J J + 1$$

 $\mu^2_{\scriptscriptstyle eff}$

From Burns, 1990

Solution of equation with Brillouin function

Ferromagnetism – Molecular field theory

• At temperatures $T > T_c$, there is no spontaneous magnetization, and we can find temperature dependence of magnetizatiob $(B_a > 0)$ M = M - B = v

with
$$y = \frac{g_J \mu_B J}{k_B T} \frac{B_a + \mu_0 \gamma M}{k_B T}$$
 $M = M_{sat} y \frac{J+1}{3J} = \frac{N \mu_{eff}^2}{3k_B T} B_a + \mu_0 \gamma M$

• Solving for *M*:

$$M = \frac{C}{\mu_0 \ T - C\gamma} B_a$$

with Curie constant

$$C = \frac{N\mu_0\mu_{eff}^2}{3k_B} = \gamma T_C$$

 Then susceptibility of ferromagnet in paramagnetic region

$$\chi = \frac{C}{T - T_C}$$

Huge !

• Some estimation for iron:

$$g_J = 2; J = 1; N = 8.5 \cdot 10^{28} m^{-3} \implies C = 1.77 K$$

$$T_c = 1043 \ K; \implies \gamma = 588$$

 $M \approx 1700 \text{ Gauss}; \implies B \sim 10^6 \text{ Gauss} = 100 T$

Reciprocal susceptibility vs. temperature for nickel

Ferromagnetism – Heisenberg exchange interaction

- What is the reason for so high local magnetic field ? – <u>Exchange interaction</u>
- Consider <u>two electrons</u> on <u>two atoms</u>. We need to find the energy difference = exchange integral J_{ex}) :
- Their wavefunction is antisymmetric due to Pauli exclusion principle
- Usually the interaction between the space and spin parts is small, and the variables can be separated :
- Antiparallel spins give antisymmetric spin wavefunction, etc.
- We can construct wavefunctions for singlet and triplet states with correct symmetry:

 $\Psi_1(\mathbf{r}_1,\mathbf{r}_2)=\phi_a(\mathbf{r}_1)\phi_b(\mathbf{r}_2)$

$$\Psi_2(\mathbf{r}_1,\mathbf{r}_2)=\phi_a(\mathbf{r}_2)\phi_b(\mathbf{r_1})$$

$$\Psi r_1, s_1, r_2, s_2 = -\Psi r_2, s_2, r_1, s_1$$

$$\begin{array}{ccc} \text{space} & \text{spin} \\ \Psi & r_1, s_1, r_2, s_2 &= \varphi & r_1, r_2 & g & s_1, s_2 \end{array}$$

Wavefunction	Singlet	Triplet
Total	Antisym.	Antysym.
Spin part	Antisym.	Symmetric
Space part	Symmetric	Antisym.

$$\varphi_{S} \quad x_{1}, x_{2} = \phi_{a} \quad r_{1} \quad \phi_{b} \quad r_{2} + \phi_{a} \quad r_{2} \quad \phi_{b} \quad r_{1} = \Psi_{1} + \Psi_{2}$$

$$\varphi_{T} \quad x_{1}, x_{2} = \phi_{a} \quad r_{1} \quad \phi_{b} \quad r_{2} - \phi_{a} \quad r_{2} \quad \phi_{b} \quad r_{1} = \Psi_{1} - \Psi_{2}$$

Ferromagnetism – Heisenberg exchange interaction-contd

 The energy shift of singlet and triplet states can be calculated from perturbation theory:

$$E_{S} = \left\langle \phi_{S} \left| V \right| \phi_{S} \right\rangle = \left\langle \Psi_{1} \left| V \right| \Psi_{1} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{2} \right\rangle + \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{1} \right\rangle$$
$$E_{T} = \left\langle \phi_{T} \left| V \right| \phi_{T} \right\rangle = \left\langle \Psi_{1} \left| V \right| \Psi_{1} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{2} \right\rangle - \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle - \left\langle \Psi_{2} \left| V \right| \Psi_{1} \right\rangle$$

$$V \quad r_1, r_2 = \frac{e^2}{\varepsilon_0} \left[\frac{1}{r_{ab}} - \frac{1}{r_{a2}} - \frac{1}{r_{b1}} + \frac{1}{r_{12}} \right] \quad (r_1 \quad r_2 \quad$$

• The energy difference between the singlet and
triplet states
$$E = E = L = 4/\Psi |V|\Psi \rangle = 4/\phi r \phi r |V|\phi r \phi r \rangle$$

$$E_{S} - E_{T} = J_{exc} = 4 \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle = 4 \left\langle \phi_{a} \quad r_{1} \quad \phi_{b} \quad r_{2} \quad \left| V \right| \phi_{a} \quad r_{2} \quad \phi_{b} \quad r_{1} \right\rangle$$

$$=\frac{e^2}{\varepsilon_0}\left[-8\left\langle\phi_a \ r_1 \ \phi_b \ r_2 \ \left|\frac{1}{r_{a2}}\right|\phi_a \ r_2 \ \phi_b \ r_1\right\rangle + 4\left\langle\phi_a \ r_1 \ \phi_b \ r_2 \ \left|\frac{1}{r_{ab}}\right|\phi_a \ r_2 \ \phi_b \ r_1\right\rangle + 4\left\langle\phi_a \ r_1 \ \phi_b \ r_2 \ \left|\frac{1}{r_{12}}\right|\phi_a \ r_2 \ \phi_b \ r_1\right\rangle\right]\right]$$

- At small *a-b* distance $J_{exc} < 0$ and singlet state is favorable
- At large *a-b* distance $J_{exc} > 0$ and triplet state is favorable
- BTW if the electrons are on the same atom, the ion interaction change is zero, $J_{exc} > 0$ and antiparallel spins are favorable = Hund's rule

14

Ferromagnetism – Heisenberg exchange interaction contd.

- Exchange interaction can be ferromagnetic or antiferromagnetic depending on interatomic distance
- Exchange interaction is electrostatic (strong) in nature
- To correlate it with molecular field theory, we can write:

$$H_{ex} = -\sum_{i,j} J_{ex} \quad s_i \cdot s_j \equiv \sum_i g_J \mu_B s_i B_{loc}$$
$$z J_{ex} s = g_J \mu_B B_{loc}$$
Number of nearest neighbors

• For Fe: $J_{ex} = \frac{g_J \mu_B \mu_0 \gamma M}{zs} = \frac{g_J \mu_B^2 \mu_0 \gamma n}{z} \approx 11 meV$

 Electrostatic interaction easily accounts for this value Exchange integral vs. interatomic distance

NNSE 508 EM Lecture #12

15

Ferromagnetic materials

- Energy is minimized by ordering spins into "domains"
 - Net moment, M, would cause external field, increase energy
 - Magnetic domains cancel so that M = 0
 - Natural ferromagnetism does not produce net magnetic field
- To magnetize a ferromagnet, impose H
 - Domain walls move to align **M** and **H**
 - Defects impede domain wall motion
 - Magnetization (**M**_r) retained when **H** removed
- Magnetic properties
 - M_s = saturation magnetization (All spins aligned with field)
 - M_r = remanent magnetization (Useful moment of permanent magnet)
 - H_c = coercive force (Field required to "erase" moment)
 - Area inside curve = magnetic hysteresis (Governs energy lost in magnetic cycle)

Ferromagnetic material is always locally saturated

Core magnetism – materials with spontaneously ordered magnetic dipoles

- High temperature:
 - Spins disordered \Rightarrow paramagnetism
- Low Temperature (T < Tc)
 - Spins align = ferromagnetism
 - Elements: Fe, Ni, Co, Gd, Dy
 - Alloys and compounds: AlNiCo, FeCrCo, SmCo₅, Fe₁₄Nd₂B
 - Like spins alternate = antiferromagnetism (RbMnF₃)
 - Unlike spins alternate = ferrimagnetism
 - Compounds: Fe₃O₄ (lodestone, magnetite), CrO₃, SrFe₂O₃, other ferrites and garnets

Ferromagnetism

 $\mathbf{M} = \mathbf{n}\mathbf{m}$

antiferromagnetism M = 0

 $\mathbf{M} = (n/2)(\mathbf{m_1} \cdot \mathbf{m_2})$

Other types of exchange interaction

- Superexchange (transition metal oxides)
 - Can be ferromagnetic or anfiferromagnetic depending upon the energy of delocalization of the p-electrons on M₁ and M₂
 - Ordering temperature up to 900 K in ferrites (NiFe₂O₄ - 863 K)
 - Sign mostly negative, though ferromagnetics are known: EuO (T_c=69K) or CrBr₃ (T_c=37K)
- RKKY interaction (Ruderman-Kittel-Kasuya-Yosida) - Indirect exchange over relatively large distances trough spin of conduction electrons (4f metals)
 - Interaction oscillates with (*k_FR*), Fermi wavevector determines the wavelength of oscillations
 - The interaction is of the same order for all rare earths, but ordering temperatures vary due to magnetic moment: 19K for Nd, 289 K for Gd)

RKKY interaction

Magnetic materils

• Magnetic induction field is the same in a

Magnetic Suscpetibility, χ

From Goldberg, 2006

Magnetic units

Magnetic induction (tesla):

B can be called magnetic induction, magnetic induction field or magnetic flux density.

Magnetic field (ampere / metre): $1 \text{ A} \cdot \text{m}^{-1} = 4 \pi \times 10^{-3} \text{ cersted.}$

The magnetic field **H** is often expressed in units of μ_0 H, hence in tesla (T) or its submultiple, the gamma (γ) which is equal to 10⁻⁹ T. A field of 1 A.m⁻¹ corresponds to 1.2566 μ T.

Magnetisation (ampere / metre): $1 \text{ A.m}^{-1} = 10^{-3} \text{ emu.cm}^{-3}$.

Magnetic moment (ampere-square metre or joule per tesla): $1 \text{ A} \cdot \text{m}^2 = 1 \text{ J} \cdot \text{T}^{-1} = 10^3 \text{ emu}$. Specific magnetic moment: $1 \text{ A} \cdot \text{m}^2 \cdot \text{kg}^{-1} = 1 \text{ emu} \cdot \text{g}^{-1}$.

Note that, sometimes, magnetisation (M), magnetic moment (m) and specific magnetic moment (σ) are expressed in tesla, Weber-meter and Weber-meter per kilogram, respectively : the reason is that we have adopted as definition of magnetisation (dm/dV): $M = B/\mu_0 - H$, whereas some authors call "magnetisation" the quantity $B_i = J = B - \mu_0 H$ which is usually called "(magnetic) polarisation".

$$1 Wb = T \cdot m^2 \qquad 1 T = \frac{V \cdot s}{m^2} \qquad 1H = \frac{Wb}{A} = \frac{T \cdot m^2}{A}$$

From Tremolet de Lacheisserie, 2005

NNSE 508 EM Lecture #12

 $1T = 10^{4} \text{ gauss} (= 1 \text{ Wb} \cdot \text{m}^{-2}).$

Physical constants

Name and symbol	Numerical value		
Speed of light in vacuum, c	2.9979×10 ⁸ m.s ⁻¹		
Permeability of vacuum, μ_0	$4\pi \times 10^{-7}$ H.m ⁻¹		
Permittivity of vacuum, $\varepsilon_0 = 1/c^2 \mu_0$	8.8542×10 ⁻¹² F.m ⁻¹		
Planck's constant, h	6.6261×10 ⁻³⁴ J.s		
$\hbar = h/2\pi$	1.0546×10 ⁻³⁴ J.s		
Acceleration of gravity, g	9.8066 m.s ⁻²		
Electron rest mass, m	9.1094×10 ⁻³¹ kg		
Electron charge (absolute value), e	1.6022×10 ⁻¹⁹ C		
Bohr magneton, $\mu_B = e\hbar/2m$	9.2742×10 ⁻²⁴ A.m ²		
Flux quantum, $h/2e$	2.0678×10^{-15} Wb		
Avogadro's number N	$6.0221 \times 10^{23} \text{ mol}^{-1}$		
Boltzmann's constant, k_B	1.3807×10^{-23} J.K ⁻¹		

Length (metre)	: $1 \text{ m} = 10^2 \text{ cm} = 39.37$ " (inch) = 10^{10} angström (Å).
Force (newton)	$: 1 \text{ N} = 10^5 \text{ dyn} = 0.102 \text{ kgf}.$
Energy (joule)	: 1 J = $10^7 \text{ erg} = 0.7243 \times 10^{23} \text{ K} = 0.6241 \times 10^{19} \text{ eV}.$
Energy density	$: 1 \text{ J} \cdot \text{m}^{-3} = 10 \text{ erg} \cdot \text{cm}^{-3}.$
Power (watt)	: 1 W = $10^7 \text{ erg.s}^{-1} = 1.359 \times 10^{-3} \text{ CV} = 1.340 \times 10^{-3} \text{ hp}.$
Pressure (pascal)	: 1 Pa = 10 baryes = 10^{-5} bar = 1.02×10^{-5} kgf. cm ⁻² = 7.49×10^{-3} torrs = 1.45×10^{-4} psi.

From Tremolet de Lacheisserie, 2005