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Lecture  contents  

 

• Macroscopic Electrodynamics -2 

– Skin effect 

– Boundary conditions, wave propagation through interface 

– Wave packet, group velocity, dispersion 

– Circuits 
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2 Medium with losses 

• After some long algebra: 

 

 

 

 

• The impedance  becomes complex:  

 

 

For good dielectrics: 
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3 
Skin depth 

• In a good conductor (metal) the attenuation of the 

wave is determined by attenuation constant a : 

 

• The skin depth of  material is the depth to which a 

uniform plane wave can penetrate before it is 

attenuated by a factor of 1/e.  For planar surfaces, skin 

depth is given as: 

• Penetration depends on frequency (f-1/2 ), conductivity 

and permeability.  

• The skin effect is the result of induction: time-varying 

magnetic field is accompanied by a time varying 

electric field   time varying current secondary 

fields  

• Skin-effect implies dissipation of the wave power by 

the current  
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4 
Skin effect 

• Another result of skin effect is non-

uniform distribution of current in 

conductors at high frequencies 

• Current density drops into the metal at 

high frequencies due to screening of the 

EM field by the induced current  

• Usually in engineering disciplines it is 

modeled as if all current flowed in -thick 

outer layer of conductor 

• As a result, resistance of a thick conductor 

increase with frequency. 

 

• If a wire radius a >> ,  

 

 

• Skin layer thickness in Cu: 
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5 
Example of Boundary Condition: Normal Component of D 

•  Consider electric field normal to the boundary  

• Consider a cylinder with  cross-sectional area Ds 

and height Dh lying half in   medium 1 and half in 

medium 2:  

• Applying Gauss’s law to the cylinder 
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• The boundary condition is 

 

• If there is no surface charge 
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nn DD 21 
For non-conducting 

materials, rs = 0 1 1 2 2n nE E or 
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6 Wave propagation through the interface:  

boundary conditions and normal incidence (low absorption) 

• Plane transverse EM (TEM) waves propagating in -

-x direction:  

 

 

• Need to consider 3 waves: incident (i), reflected (r) 

and transmitted (t) 

 

• Continuity of tangential E fields requires: 

 

• Continuity of tangential H fields requires:  

 

  equivalent result in optics (nonmagnetic): 

 

Boundary conditions result from application of 

Maxwell equations to the interface area: 

 

  

2
k i





 

i r tH H H  1 1 2

i trE EE

  
 

0 . .i t i x x
yE E e e c c   

0 . .i t i x x
zH H e e c c   

0

0

E

H





 

1 1 2i r tn E n E n E 

i r tE E E 

or 

0 0

0 0

1E

H n




since 



NNSE 508 EM  Lecture #5     

7 

• Amplitude reflection and transmission for normal incidence 

 

 

 

Or from refractive indexes (notation used in optics)  

 

 

 

• Power or intensity reflection and transmission for normal incidence 

 

 

 

• Dielectric functions, or  refraction/extinction indexes or impedances  is 

sufficient to describe linear EM properties of a non-magnetic medium.   

 

 

Wave propagation through the interface:  

boundary conditions and normal incidence 
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8 

• Example: normal incidence from dielectric to perfect metal: perfect reflection 

 

 

 

 

 

 

• Results in a standing wave: 

 

Normal incidence from dielectric to perfect metal 
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9 Oblique incidence: transverse electrical (TE) and 

transverse magnetic (TM) EM waves: refractive index  

If incidence is not normal, reflectance will depend 

on polarization. Applying boundary conditions 

for electric field, we can obtain: 

 

For s-polarization (TE):  

           

    

 

For p-polarization (TM): 
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10 Oblique incidence: transverse electrical (TE) and 

transverse magnetic (TM) EM waves: impedance   

For p-polarization (TM): 
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For s-polarization (TE): 

  

TM 
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11 

  Example: optical waveguides 

• Total internal reflection is used in 
dielectric waveguides /fibers 

 

 

• The acceptance angle is the 

maximum angle of incidence, at 

which the condition for total 

reflection is satisfied. 

 

• Solution of Maxwell equations 
give dispersion relationships for 
propagating modes, and field 
configurations in the modes. 

 

• Optical fiber is another example of 
a waveguide 

Low order modes in a fiber 
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12 

  Group velocity 

• Phase velocity may depend on frequency 

 

 

• If we superpose wave of several frequencies we can 
make a wave packet 

 

• The velocity of the packet is the group velocity 

 

 

• Let’c sonsider a packet consisting of two waves with 
frequencies                and corresponding wavevectors 
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13 

Dispersion 

• For a signal (such as a pulse) comprising a band of frequencies, different 
frequency components propagate with different velocities causing distortion 
of the signal.  This phenomenon is called dispersion. 

From Itskevich, 2004 
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14 Circuits 

• It is informative to show that circuit theory is a 
very special case of electromagnetic field 
theory. Let’s figure out where the circuit 
equations come from and what assumptions 
are made. 

• Let’s consider a circuit with applied voltage, 
resistor, capacitor and inductances and apply 
the Faraday’s law 

 

 

 

 

And evaluate parts of the contour integral 

 

• a-b Applied voltage  

 

 

• Filamentary conductor: assume that 
conductivity is much higher than that of 
resistor  field is low  

 

• c-d resistor (lossy cylinder) 

From Neff, 1991 
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15 Circuits-2 

• g-h capacitance C 

 

• As charge  consists of static and time-dependent 

parts  

 

• e-f inductance L 

• no contribution to the contour integral (perfect  

conductor),  

• Integral over the fixed surface  reasonable to 

neglect flux linking the open surface 

everywhere except the N-turn coil, because the 

magnetic field threading through in the coil is 

larger than everywhere else 

 

 

• Finally: 
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16 

Circuits-3 

• At static condition: 

 

 

• For a harmonic signal: 

 

 

• Note the phase shift between I and V 

 

• Also conservation of charge leads to  Kirchoff’s 
current law 

 

• Assumptions made:  
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17 
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