Lecture contents

- Macroscopic Electrodynamics -2
 - Skin effect
 - Boundary conditions, wave propagation through interface
 - Wave packet, group velocity, dispersion
 - Circuits

1

Medium with losses

 $\alpha = \omega \sqrt{\varepsilon \mu} \left\{ \frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} - 1 \right] \right\}^{1/2} \ge 0$ After some long algebra: ۰ $\beta = \omega \sqrt{\varepsilon \mu} \left\{ \frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} + 1 \right] \right\}^{1/2} > 0$ $\eta = \frac{E}{H} = \sqrt{\frac{\mu}{\tilde{\varepsilon}}} = \frac{i\omega\mu}{\gamma} = \frac{\omega\mu}{\alpha^2 + \beta^2} (\beta + i\alpha)$ The impedance becomes complex: ٠ For good dielectrics: $\frac{\varepsilon_2}{\varepsilon_1} = \frac{\sigma}{\omega\varepsilon} \ll 1$ **For good conductors:** $\frac{\mathcal{E}_2}{\mathcal{E}_1} = \frac{\sigma}{\omega \mathcal{E}} \gg 1$ $\alpha = \beta = \sqrt{\frac{\omega\mu\sigma}{2}}$ $v_p = \frac{1}{\sqrt{\mu\varepsilon}}$ $\alpha = \frac{\omega}{2} \sqrt{\varepsilon \mu} \frac{\sigma}{\omega \varepsilon}$ $\beta = \omega \sqrt{\varepsilon \mu} \left| 1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right|$ $v_p = \sqrt{\frac{2\omega}{\mu\sigma}}$ $\eta = \sqrt{\frac{\mu}{\varepsilon}} \left\{ \left[1 - \frac{3}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right] + i \frac{1}{2} \left(\frac{\sigma}{\omega \varepsilon} \right) \right\}$ $\eta = \sqrt{\frac{\omega\mu}{2\sigma}} + i\sqrt{\frac{\omega\mu}{2\sigma}}$

Skin depth

- In a good conductor (metal) the attenuation of the wave is determined by attenuation constant *a* :
- The *skin depth* of material is the depth to which a uniform plane wave can penetrate before it is attenuated by a factor of *1/e*. For planar surfaces, skin depth is given as:
- Penetration depends on frequency $(f^{1/2})$, conductivity and permeability.
- The skin effect is the result of induction: time-varying magnetic field is accompanied by a time varying electric field → time varying current → secondary fields
- Skin-effect implies dissipation of the wave power by the current

Skin effect

- Another result of skin effect is nonuniform distribution of current in conductors at high frequencies
- Current density drops into the metal at high frequencies due to screening of the EM field by the induced current
- Usually in engineering disciplines it is modeled as if all current flowed in δ-thick outer layer of conductor
- As a result, resistance of a thick conductor increase with frequency. $R \approx \frac{l}{2\pi a\sigma\delta}$
- If a wire radius $a >> \delta$,

• Skin layer thickness in Cu:

frequency	d
60 Hz	8.57 mm
10 kHz	0.66 mm
100 kHz	0.21 mm
1 MHz	66 µm
10 MHz	21 µm

Example of Boundary Condition: Normal Component of *D*

 $\Delta h/2$

- Consider electric field normal to the boundary ٠
- Consider a cylinder with cross-sectional area Δs • and height Δh lying half in medium 1 and half in

medium 2:
Applying Gauss's law to the cylinder

$$\oint_{S} \vec{D} \cdot d\vec{s} = \int_{V} q_{f} dv \qquad \Delta h/2$$

$$\int_{top} \vec{D} \cdot d\vec{s} + \int_{bottom} \vec{D} \cdot d\vec{s} + \int_{side} \vec{D} d\vec{s} \qquad q_{f} \Delta s$$

$$= D_{1n} \Delta s - D_{2n} \Delta s$$

- The boundary condition is $D_{1n} - D_{2n} = \rho_s$
- If there is no surface charge ٠

$$D_{1n} = D_{2n}$$
 or $\mathcal{E}_1 E_{1n} = \mathcal{E}_2 E_{2n}$

For non-conducting materials, $\rho_s = 0$

 ΔS

NNSE 508 EM Lecture #5

 \mathcal{E}_1

 \vec{E}_{2}

Wave propagation through the interface: boundary conditions and normal incidence (low absorption)

- Plane transverse EM (TEM) waves propagating in --x direction:
- Need to consider 3 waves: incident (i), reflected (r) and transmitted (t)
- Continuity of tangential E fields requires:
- Continuity of tangential H fields requires: $H_i + H_r$

equivalent result in optics (nonmagnetic): $\tilde{n}_1 E_i - \tilde{n}_1 E_r = \tilde{n}_2 E_t$

Boundary conditions result from application of Maxwell equations to the interface area:

 $\mathbf{E}_{1tan} = \mathbf{E}_{2tan}$ $\mathbf{H}_{1tan} = \mathbf{H}_{2tan}$ $\mathbf{D}_{1norm} = \mathbf{D}_{2norm}$ $\mathbf{B}_{1norm} = \mathbf{B}_{2norm}$
$$\begin{split} E_{y} &= E_{0}e^{i\omega t}e^{i\beta x+\alpha x}+c.c.\\ H_{z} &= \underbrace{H_{0}}e^{i\omega t}e^{i\beta x+\alpha x}+c.c. \end{split}$$
 $\frac{E_0}{H_0} = \sqrt{\frac{\mu}{\tilde{\varepsilon}}} = \eta$

$$E_i + E_r = E_t$$

$$I_i + H_r = H_t \text{ or } \frac{E_i}{\eta_1} - \frac{E_r}{\eta_1} = \frac{E_t}{\eta_2}$$

 $2E_t$ since $\overline{H_0}$

Wave propagation through the interface: boundary conditions and normal incidence

• Amplitude reflection and transmission for normal incidence

$$r = \frac{E_r}{E_i} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad t = \frac{E_t}{E_i} = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + r \qquad \frac{H_t}{H_i} = \frac{2\eta_1}{\eta_2 + \eta_1}$$

Or from refractive indexes (notation used in optics)

$$r = \frac{E_r}{E_i} = \frac{\tilde{n}_1 - \tilde{n}_2}{\tilde{n}_1 + \tilde{n}_2} \qquad t = \frac{E_t}{E_i} = \frac{2\tilde{n}_1}{\tilde{n}_1 + \tilde{n}_2}; \qquad \frac{H_t}{H_i} = \frac{2\tilde{n}_2}{\tilde{n}_1 + \tilde{n}_2}$$

• Power or intensity reflection and transmission for normal incidence

$$R = \left| \frac{\tilde{n}_1 - \tilde{n}_2}{\tilde{n}_1 + \tilde{n}_2} \right|^2 \qquad T = \frac{\operatorname{Re}(\tilde{n}_2)}{\operatorname{Re}(\tilde{n}_1)} \left| \frac{2\tilde{n}_1}{\tilde{n}_1 + \tilde{n}_2} \right|^2 = 1 - R$$

• Dielectric functions, or refraction/extinction indexes or impedances is sufficient to describe linear EM properties of a non-magnetic medium.

Normal incidence from dielectric to perfect metal

• Example: normal incidence from dielectric to perfect metal: perfect reflection

• Results in a standing wave:

Oblique incidence: transverse electrical (TE) and transverse magnetic (TM) EM waves: refractive index

Oblique incidence: transverse electrical (TE) and transverse magnetic (TM) EM waves: impedance

For s-polarization (TE):

$$r_{TE} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
$$t_{TE} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

For p-polarization (TM):

$$r_{TM} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
$$t_{TM} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

Example: optical waveguides

- Total internal reflection is used in dielectric waveguides /fibers
- The *acceptance angle* is the maximum angle of incidence, at which the condition for total reflection is satisfied.
- Solution of Maxwell equations give dispersion relationships for propagating modes, and field configurations in the modes.
- Optical fiber is another example of a waveguide

Low order modes in a fiber

Group velocity

- Phase velocity may depend on frequency
- If we superpose wave of several frequencies we can ۲ make a wave packet
- The velocity of the packet is the group velocity ٠
- Let'c sonsider a packe frequencies $\omega \pm \Delta \omega$ a

Let'c sonsider a packet consisting of two waves with
frequencies
$$\omega \pm \Delta \omega$$
 and corresponding wavevectors $k \pm \Delta k$
$$E = E_0 e^{i\left[(\omega - \Delta \omega)t - (k - \Delta k)z\right]} + E_0 e^{i\left[(\omega + \Delta \omega)t - (k + \Delta k)z\right]} = 2E_0 e^{i\left[\omega t - kz\right]} \cos\left(\Delta \omega t - \Delta kx\right)$$

 v_g

 $d\omega$

 $v_p = \frac{\omega}{k}$ Wave propagation velocity

Envelope propagation velocity

Dispersion

• For a signal (such as a pulse) comprising a band of frequencies, different frequency components propagate with different velocities causing distortion of the signal. This phenomenon is called *dispersion*.

Signal degradation: 1) Noise 2) Pulse broadening

From Itskevich, 2004

Circuits

Applied electric

field

wires

- It is informative to show that circuit theory is a very special case of electromagnetic field theory. Let's figure out where the circuit equations come from and what assumptions are made.
- Let's consider a circuit with applied voltage, resistor, capacitor and inductances and apply the Faraday's law

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_S \vec{B} \cdot d\vec{s}$$

And evaluate parts of the contour integral

- a-b Applied voltage $\int \vec{E} \cdot d\vec{l} = -V_{ba}$
- Filamentary conductor: assume that ٠ conductivity is much higher than that of resistor \rightarrow field is low
- c-d resistor (lossy cylinder)

Cross-sectional area, s_R length, l_p

R

C

ľ

N turns

Circuits-2

• g-h capacitance C
$$\int_{g}^{h} \vec{E} \cdot d\vec{l} = V_{gh} = \frac{q}{C} = \frac{1}{C} \int I dt + \frac{Q_{0}}{C}$$

• As charge consists of static and time-dependent parts da

$$I = \frac{dq}{dt} \quad \text{or} \quad \mathbf{q} = \int I dt + Q_0$$

- e-f inductance L
- no contribution to the contour integral (perfect conductor),
- Integral over the fixed surface → reasonable to neglect flux linking the open surface everywhere except the *N*-turn coil, because the magnetic field threading through in the coil is larger than everywhere else

$$-\frac{d}{dt}\iint_{S}\vec{B}\cdot d\vec{s} = -\frac{dN\Phi}{dt} = -\frac{d\left(LI\right)}{dt} = -L\frac{dI}{dt}$$

• Finally:

$$V_{ba} = IR + \frac{1}{C}\int Idt + \frac{Q_0}{C} + L\frac{dI}{dt}$$

Inductance NNSE 508 EM Lecture #5

15

Circuits-3

- At static condition:
- For a harmonic signal:

$$V_{ba}(t) = V e^{i\omega t}$$
$$I(t) = I e^{i\omega t}$$

$$V_{ba} = IR + \frac{1}{i\omega C}I + i\omega LI$$

- Note the phase shift between I and V
- Also conservation of charge leads to Kirchoff's current law
- Assumptions made:
 - 1. All linear dimensions are much less than $(f \sqrt{\mu \epsilon})^{-1}$.
 - 2. A filamentary closed path is employed.
 - 3. Perfect conductors exist everywhere in the circuit except at the input gap, between capacitor plates, and between the *resistor* terminals.
 - 4. Displacement current is confined to the capacitor.
 - 5. Magnetic flux is confined to the inductor.
 - 6. The geometry is fixed in time.

From Neff, 1991

Overview of Electromagnetics

