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Medium with losses
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Skin depth

In a good conductor (metal) the attenuation of the o = %
wave Is determined by attenuation constant a : 2
The skin depth of material is the depth to which a 1 2
uniform plane wave can penetrate before it is Oskin = — =
o U

attenuated by a factor of 1/e. For planar surfaces, skin
depth is given as:

Penetration depends on frequency (f12), conductivity
and permeability.

The skin effect is the result of induction: time-varying
magnetic field is accompanied by a time varying
electric field - time varying current ->secondary
fields

Skin-effect implies dissipation of the wave power by
the current
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Skin effect

4 4
Another result of skin effect is non- J,(z,0)=3,(0,®) e Sp & . z>0
uniform distribution of current in
conductors at high frequencies

Current density drops into the metal at 0w S — 1 [ 2
high frequencies due to screening of the PR e
EM field by the induced current =101 V2

Usually in epgineering discipline_s itis _ y (o..,,ne-l__x Gzl = T 0,8

modeled as if all current flowed in &-thick "

outer layer of conductor k .

As a result, resistance of a thick conductor 0 3 Z—> @
increase with frequency. |

~ From Neff, 1991
2raoc0

If a wire radius a >> 9,
frequency d

60 Hz 8.57 mm

Skin layer thickness in Cu: Ubarks 105 il J -
100 kHz 1 0.21 mm L
d

1 MHz 66 um

10 MHz 21 um
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Example of Boundary Condition: Normal Component of D

» Consider electric field normal to the boundary

» Consider a cylinder with cross-sectional area As
and height Ah lying half in medium 1 and half in Anh/2

medium 2:

» Applying Gauss’s law to the cylinder

o B D

2 A4S 5
pS ng
L SR ATAVAEISY, |
&y

i Ez [32

«  The boundary condition is D1n — D2n = P,

« |f there is no surface charge

Dln — D2n

or

81 Eln — 52 E2n

For non-conducting
materials, p, =0
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Wave propagation through the interface:

boundary conditions and normal incidence (low absorption)

Boundary conditions result from application of

E; ? Maxwell equations to the interface area:
H 1 Ellun = Eﬂtan
Medium 1 - H,, Z
E7‘<_. y Hitan = Haan
yi i MErr .
777 e ] T Dinorm = Danorm
Medium 2 : t i 2_71' Binorm = Bonorm
yt v 7/ /1
. - _ It 1 SX+aX
Plane transverse EM (TEM) waves propagating in - Ey = Eqye e + C.C.
-x direction:
J H, = Hge'*eP*** 1 cc.
Need to consider 3 waves: incident (i), reflected (r) Eo — ’4 =7
and transmitted (t) . Ho g
Continuity of tangential E fields requires: E, +E, =E
E;, E E
Continuity of tangential H fields requires: H, +H,. =H, or |[Th Th
E 1
equivalent result in optics (nonmagnetic): | E, —RE, =A,E;| since HZ = IZS A
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Wave propagation through the interface: 7
boundary conditions and normal incidence

« Amplitude reflection and transmission for normal incidence

r:Er:772—771 t:Et: 217, “1ar He _ 2m
Ei m+m Ei  m+m Hi 7, +m
Or from refractive indexes (notation used in optics)
r:Er:ﬁl_ﬁZ t:Et: 2, Ht: 21,

E X

Medimt M || )—AZ
7 2 d

» Power or intensity reflection and transmission for normal incidence

« Dielectric functions, or refraction/extinction indexes or impedances is
sufficient to describe linear EM properties of a non-magnetic medium.

R —

N + N,

n, — Ny

2

_ Re()

21,

 Re(fi)

" +N,

2

=1-R

O, Y O e

Medium 2 E,
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Normal incidence from dielectric to perfect metal

« Example: normal incidence from dielectric to perfect metal: perfect reflection
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Obligue incidence: transverse electrical (TE) and
transverse magnetic (TM) EM waves: refractive index

Intensity reflection coefficient from
GaAs (n=3.6) to air

9

?aciiegf k dx Reflected X 10
L wave £ k_ }
E', F4
/. 3 ' |
. Hi P T E
Meg:um 1 B8, He ug 06 -
»Z
c
Medium 2 §=] 5
€ 0.4
n, 8\ 2 Brewster
E; ] angle
Refracted 02+ 15.52°
wave E, k,
Ny
0L s L = 5 tan Ogyepster = —=
0° & 8 12° 1%
L : : Incident —-
If incidence is not normal, reflectance will depend ncident angle _ _
on polarization. Applying boundary conditions The Brewster angle is a special
for electric field, we can obtain: angle of incidence for which ryy = 0.

_ N, cos@ —n, Ccos b,

For s-polarization (TE): e =

n, cos &, +n, cos & >
n .

> cos 6, = 1—[—15|n Qij

n, COS &; — N, cos 6, /

n2 CcOSs Qi + nl COS Qt _/ Imaginary at “Total

internal reflectance”

For p-polarization (TM): It
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Obligue incidence: transverse electrical (TE) and

transverse magnetic (TM) EM waves: impedance

TE

Incident

[
y F4

wave £k, 4x Egt‘l:cgedk
E: r r
H, %
Medium 1 /’I 6, H,
n g
Medium 2
K BN\ .
E,
Refracted
wave E, k,
™
Incident
wave E Kk, 4x Egil:cgedk
H, .
H,
Medium 1 | Br £
Ny 3
Medium 2
n2 ei -
=\ H

= Refracted
wave E, Kk,

For s-polarization (TE):

_ 17,0080, ~17,€0S

r‘TE
1, C0S &, + 17, COS 6,

2n, c0S 6.
be =

" 1,c0S6, +1,c0S6,

For p-polarization (TM):

_ 1,C086, —1,C08 6
1, COS 6, +17,COS O,
2n, cos 6.
by =
1, COS 6, + 17, COS O,

™
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Example: optical waveguides

z
Total internal reflection is used in =~ ———<—> L —
dielectric waveguides /fibers / \ / \
n > m
N

23]

The acceptance angle is the acceptance cone
maximum angle of incidence, at
which the condition for total
reflection is satisfied.

6, = arcsin

Solution of Maxwell equations
give dispersion relationships for
propagating modes, and field
configurations in the modes.

Low order modes in a fiber

Optical fiber is another example of cladding

a waveguide
n,
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Group velocity

Phase velocity may depend on frequency

If we superpose wave of several frequencies we can
make a wave packet

The velocity of the packet is the group velocity V

12

o a1 | 4’| ™

Let’c sonsider a packet consisting of two waves with
frequencies @+ A@ and corresponding wavevectors k + Ak

1 |I ." W
|| W

il I | \‘ I

s

E_ Eoei[(a)—Aa))t—(k—Ak)z] N Eoei[(m+Am)t—(k+Ak)z] _ 2Eoei[a)t—kz] cOS ( Aot — Akx)
Wave propagation V, = @ /
velocity K .
. deo (dk )\
Envelope propagation V, =—=| —
velocity J dk do
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Dispersion

« Forasignal (such as a pulse) comprising a band of frequencies, different
frequency components propagate with different velocities causing distortion
of the signal. This phenomenon is called dispersion,

4 infensity Optical

/ F]LI|E'E!S\

Input signal
AT - minimal period
f=1/T- frequency

 intensity

After distance L

After distance 2L

b infensity
—_—

Aflereisance St

Signal degradation: 1) Noise  2) Pulse broadening

From Itskevich, 2004 NNSE 508 EM Lecture #5



Circuits

« Itis informative to show that circuit theory is a
very special case of electromagnetic field
theory. Let’s figure out where the circuit
equations come from and what assumptions
are made.

» Let’s consider a circuit with applied voltage,
resistor, capacitor and inductances and apply
the Faraday’s law

Applied

electric -.._|

— — (:i = — field
ij}E.cu :_ELIB-dS

And evaluate parts of the contour integral

b
» a-b Applied voltage j E . dr = —Vb
a
a

Cross-sectional area, S

length, 1,

14

L

el
r 43
<

Iy

N
y
jl.fvr'tlll1ﬂii

h 8
i - - -
Jl’

Plate area, s,

Spacing, d,

From Neff, 1991

 Filamentary conductor: assume that =
conductivity is much higher than that of _[ E-dl =0
resistor > field is low wires

- 1 d g d
« c-d resistor (lossy cylinder) J‘E dl :jidl - Lcd = IR
c c o d
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Circuits-2

h
g-h capacitance C I E.dl =V,
g

As charge consists of static and time-dependent

parts g
_499 _
I_dt or q_'[ldt+QO

e-f inductance L

electric
field

no contribution to the contour integral (perfect
conductor),

Integral over the fixed surface = reasonable to
neglect flux linking the open surface
everywhere except the N-turn coil, because the
magnetic field threading through in the coil is
larger than everywhere else

_iﬂg.dgz_d'\'_CI):_M L
dt it dt

Finally:

V. =IR+= jldt+%° +LE

Applied ¢
-

) =—:—jldt+%°

15

Cross-sectional area, § R
length, 1,

ek

L ::? N tumns
Iy

h 8
uE T | S
[

Plate area, s,
Spacing, d,

For solenoid:

B = y,nl

and
N® = NBS =(4,n’IS )1 = LI

/

Inductance
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Circuits-3
At static condition:
For a harmonic signal: V.. (t) —\ei 1
I(t)zleia)t Vba = IR+|a)—CI + 1wl

Note the phase shift between | and V

Also conservation of charge leads to Kirchoff’s

|
1 _
current law T, l,

10
Assumptions made: n |

1. All linear dimensions are much less than (f Vue) !,
2. A filamentary closed path is employed.

3. Perfect conductors exist everywhere in the circuit except at the input gap,
between capacitor plates, and between the resistor terminals.

4. Displacement current is confined to the capacitor.
. Magnetic flux is confined to the inductor.

th

6. The geometry is fixed in time. From Neff, 1991
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Fundamental laws of

Special
cases

Overview of Electromagnetics

: _ Maxwell’s
classical electromagnetics equations
|
Electro- Magneto- Electro- Geometric
statics statics dynamics Optics
“ g ), / \
Statics: g —0 —
ot Tranls:r_rrlllessmn Wave Optics
i
Theory
Kirchoft’s
Laws d<<A
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