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1 

Lecture  contents  

• Dielectrics. Polarization 

• Linear polarizability 

• Clausius-Masotti equation  

• Frequency dependence of polarizability 

• EM/optical properties of dielectrics  

• Ferroelectrics and piezoelectrics 
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2 
Charge and Polarization 

Polarization may be thought of as a bulk movement of the 

positive charges relative to the negative charges 

resulting in the bound charge density ρb. Consider three 

cases: 

 

• No polarization. Charge density (ρb) in the medium is 

zero since the positive (ρ+) and negative (ρ-) distributions 

overlap.  

• Uniform polarization. The relative shift of the charge 

densities leads to the appearance of surface charge 

densities (σ) The positive and negative charge densities 

in the bulk still cancel.  

• Nonuniform polarization. The positive charge density is 

stretched out as well as displaced to the right. The 

charge density on the positive surface is greater than 

that on the negative surface. The polarisation increases 

to the right.  

b P  
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3 
Dielectrics. Polarizability 

• Three basic mechanisms of 

polarization: 

– Dipolar (molecular) polarizability  

due to reorientation (most 

significant in liquids and gases) 

 

– Ionic polarizability  due to 

displacements of the positive and 

negative ions 

– Results in lattice distortions 

– May give rise to ferroelectricity 

 

 

– Atomic (electronic) polarizability 

due to redistribution of charge in 

any atom 
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4 
Polarizability 

• Problem: find electric response of dielectric 

material  on electric field, in other words find 

polarization (P) vs. external electric field 

 

• Linear response: 

 

 

 

• Dipole moment of atom 

 

 

 

• Simplest case: linear scalar polarizability of 

atom, a (can be tensor) 

 

 

 

• Next, we need to find Eloc  
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5 
Polarizability of atom 

locp Ea
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6 
Local electric field -1 

 

• Next, we need to find Eloc  

 

• Let’s consider a sphere within a sample    

 

• Eloc is a sum of  

• Applied external field, Eappl 

• E1 is due to polarization charge on the 

sample surface (depolarizing field) 

• E2 is due to the polarization charge on 

the sphere surface 

• E3 is due to dipoles within the sphere 
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7 
Depolarizing field 

• Field in a sample depends on its shape 

(bound surface charge distribution) 

 

 

• Field due to dipoles in the center of 

dielectric sphere is a sum over all atoms 

 

• Considering both field and dipole 

moment along z-direction: 

 

 

• Consider sample with cubic symmetry or 

amorphous 

                  

• In a spherical sample with cubic crystal 

symmetry 

• For our problem: 
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8 
Field E2 

• Field due to polarization charge on a 

sphere surface, E2  

 

• Charge density on the surface rings   

 

 

• Ring surface 

 

• Charge on the ring 

 

 

• Need to add up fields due to rings 

 

 

• Field in the center of the cavity 

(Lorentz's field) : 
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9 
Clausius-Massotti equation 

 

• Polarization is a sum of dipole moments in 

unit volume of the sample: 

 

 

• We have found the local field: 

 

 

 

 

• Substituting 

 

 

• Finally obtain Clausius-Masotti equation  
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10 
Static dielectric constants of solids 
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11 
Frequency dependence of polarizability 

• Problem: dipole under oscillating electric 

field  

 

• Two charges move with “spring” force b 

 

• Introducing dipole moment and reduced 

mass 

 

 

 

• To obtain oscillator equation, introduce 

dipole resonance frequency 

   and relaxation constant g  

 

• Relaxation depends on state of material 

and temperature 

 

 From Christman, 1988 
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12 
Frequency dependence of polarizability 

• Under harmonic field 

 

   the polarizability 

 

   is just a response of harmonic oscillator 

with damping  

 

 

 

• In solids, more accurately normal (optical) 

phonon modes should be considered 

instead of isolated dipoles 

• Note another origin of imaginary part of 

dielectric function providing  

   dissipation: 
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13 
Frequency dependence of dielectric function  
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14 

Dielectric function and reflection  

• I n general, by measuring the reflection 

spectrum in a wide photon energy range is 

enough to find both real and imaginary parts 

of the dielectric function 

 

 

• Real and imaginary parts of the dielectric 

function are coupled with Kramers-Kronig 

dispersion relations: 

 

 

 

 

 

 

 

 

 

• At high frequencies  

 

 

From Yu and Cordona, 2003 
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15 

Absorption coefficient and refractive index 

• In dielectrics and semiconductors, the 

usual choice of 2 medium (non-

magnetic) parameters is absorption 

coefficient and refractive index  

 

• Absorption coefficient:  

• low below bandgap energy,  

• high above bandgap (depends on 

density of states) 

 

• Refractive index 

• Almost constant below bandgap 

• Reduced to unity above plasma 

frequency 

• Has a pole at TO optical phonon 

frequency 

 

From Piprek, 2003 
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16 
Ferroelectrics: general features 

• Ferroelectrics are materials with 

spontaneous polarization (and hysteresis) 

 

• Example: Crystalline BaTiO3 

 

 

 

T>393 K 

Cubic perovskite 

structure 

T<393 K 

Tetragonal 

distortion 

Displacements ~0.13A 

Coercive force 

1st order phase transition  

E 

Domain structure 
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17 
Temperature dependence of dielectric constant  

• Temperature dependence of susceptibility is 

described by Curie-Weiss law (paraelectrics) 
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18 
Piezoelectrics 

• Polarization can result from strain 

(deformation).   

• Example: in BaTiO3 deformation leads to 

crystal cell distortion 

• Sample under uniaxial stress T: 

    

• Reversibly, strain depends on the applied 

field 

 

 

• For quartz 

 

 

• For BaTiO3 in (100) direction  

 

0P E dT 

e sT dE 

d – polarization strain constant  

s – elastic compliance 

(typically both are tensors) 

 

122.3 10 /d m V 

103 10 /d m V 


