Lecture contents

- A few concepts from Quantum Mechanics
- Particle in a well
- Two wells: QM perturbation theory
- Many wells (atoms) \rightarrow BAND formation
- Tight-binding model
- Solid state physics review
- Approximations

Few concepts from Quantum Mechanics

Electrons are waves:

- Psi-function (Ψ, ψ)
- Schrödinger equation
- Hamiltonian

If \hat{H} does not depend on time

$$
\Psi(r, t)=\psi(r) e^{-i \frac{E t}{\hbar}} ; \xrightarrow{\text { plane_ wave }} \frac{E}{\hbar}=\omega
$$

Time-independent Schrödinger equation: $\quad \hat{H} \psi(r)=E \psi(r)$

$$
\hat{H} \psi(r) \equiv\left[-\frac{\hbar^{2}}{2 m} \Delta+V(r)\right] \psi(r)=E \psi(r)
$$

Uncertainty principle (Fourier theorem +w.-p. dualism)

$$
\Delta p \Delta x \sim h
$$

Compare to wave packet Δk : $\Delta k \Delta x \sim 2 \pi$

Quantum Mechanics: particle in a single-dimensional well

For infinite barrier, $V_{0} \rightarrow \infty$

$$
\begin{aligned}
& k_{n}=\frac{\pi n}{L} \\
& E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2} \quad \psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{\pi n x}{L}
\end{aligned}
$$

Two wells

First approximation of perturbation theory: $\quad \Delta E \approx \int_{-\infty}^{+\infty} \psi_{1}^{*} V_{2}(x) \psi_{1} d x \equiv\left\langle\psi_{1}\right| V_{2}\left|\psi_{1}\right\rangle$
What will happen if the wells are resonant ?

$$
\hat{H} \psi(r) \equiv\left(T+V_{1}+V_{2}\right) \psi=E \psi
$$

Solution in the form: $\psi=C_{1} \psi_{1}+C_{2} \psi_{2}$

Two wells: energy level splitting

Bonding and antibonding

When two atoms brought together, wave functions interact each other and energy levels split.

Wave function

Probability density function

Bonding

Tight-binding model: periodic array of atoms

- Formation of energy band
- Width depends mainly on interaction of the closest neighbors
- Wavefunctions are renormalized

Start with valence state:

$$
H_{a t} \psi_{0}(r)=E_{0} \psi_{0}(r)
$$

Consider crystal Hamiltonian as atomic + perturbation :

$$
H_{c r y s t}=H_{a t}+\Delta V
$$

Solution in the form :

$$
\psi=\sum_{R} C_{R} \psi_{0}(r-R) ; \quad R=m a_{0} ; \quad m=0, \pm 1 \ldots
$$

Tight-binding model: solution

$$
\begin{array}{rl}
\psi= & \sum_{R} C_{R} \psi_{0}(r-R), \quad R \text {-translation vector } \\
& \int \psi^{*}(r): \sum_{R} C_{R} \psi_{0}(r-R)\left[E_{0}-E+\Delta V\right]=0 \\
& \int d r \sum_{R} C_{R}\{\left(E_{0}-E\right) \underbrace{\left\langle\psi_{0}(r)\right| \psi(r-R)}_{\alpha(R)}\rangle
\end{array}+\underbrace{\left\langle\psi_{0}(r)\right| \Delta V\left|\psi_{0}(r-R)\right\rangle}_{-\gamma(R)})=0 \quad . \quad . \quad .
$$

$$
C_{R}=\left.N^{-1 / 2} e^{i k R}| | C_{R}\right|^{2} \text { - probability to find } \begin{gathered}
\text { electron on } R^{+h} \text { sit } \\
\text { el }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Applying (periodic) } \\
& \text { boundary conditions }
\end{aligned}
$$

$$
\psi=\sum_{R} N e^{i k R} \psi_{0}(r-R)=e^{i k r} \cdot \underbrace{\sum_{R} N e^{-i k(r-R)} \psi_{0}(r-R)}_{\text {periodic Block function }}
$$

$$
\begin{aligned}
& N \sum_{R}\left\{\left(E_{0}-E\right) \alpha(R)-\gamma(R)\right\} e^{i k R}=0 \\
& E_{k}=E_{0}-\frac{\sum_{k} \gamma(R) e^{i k R}}{\sum_{R} \alpha(R) e^{i k R}}
\end{aligned}
$$

k - quasi wavevector is a quantum number to innumerate the electron states

NNSE 508 EM Lecture \#8

Tight-binding model: solution

$\begin{gathered}\text { Solution for band constructed from a } \\ \text { single atomic orbital (s-band): }\end{gathered} \quad E_{k}=E_{0}+\frac{\sum_{R}\left\langle\psi_{0}(r)\right| \Delta V\left|\psi_{0}(r-R)\right\rangle e^{i k R}}{\sum_{R}\left\langle\psi_{0}(r) \mid \psi_{0}(r-R)\right\rangle e^{i k R}}$

When overlap is negligible: $\quad\left\langle\psi_{0}(r) \mid \psi_{0}(r-R)\right\rangle=\delta(R)$

Transfer integrals :

$$
\left\langle\psi_{0}(r)\right| \Delta V\left|\psi_{0}(r-R)\right\rangle=-\gamma
$$

Diagonal element:

$$
\left\langle\psi_{0}(r)\right| \Delta V\left|\psi_{0}(r)\right\rangle=-\beta
$$

S-band:

$$
E_{k}=E_{0}+\frac{\sum_{R}\left\langle\psi_{0}(r)\right| \Delta V\left|\psi_{0}(r-R)\right\rangle e^{i k R}}{\sum_{R}\left\langle\psi_{0}(r) \mid \psi_{0}(r-R)\right\rangle e^{i k R}}
$$

$$
\begin{aligned}
& E_{k}=E_{0}-\beta-\sum_{R} \gamma(R) e^{i k R} \\
& \text { Width of a 1D S-band }=2 \gamma \\
& \text { Over nearest neibors }
\end{aligned}
$$

Tight-binding model: s-band in FCC crystal

Γ - point: $(0,0,0)$
X- point: $\frac{2 \pi}{a}(1,0,0)$
L- point: $\frac{\pi}{a}(1,1,1)$
K- point: $\frac{2 \pi}{a}\left(\frac{3}{4}, \frac{3}{4}, 0\right)$ W- point: $\frac{2 \pi}{a}\left(1, \frac{1}{2}, 0\right)$

Along Λ-direction: $\vec{k}=\frac{2 \pi}{a_{0}}(1,1,1) \cdot \alpha$

$$
\begin{aligned}
& =\gamma \cdot 3\left\{2+2 \frac{e^{i \cdot 2 \pi \alpha}+e^{-i 2 \pi \alpha}}{2}\right\}=6 \gamma(1+\cos 2 \pi \alpha)= \\
& =12 \gamma \cos ^{2} \pi \alpha \\
& E_{k}=E_{0}-\beta-12 \gamma \cos ^{2} \pi \alpha \quad(a \operatorname{long}(111))
\end{aligned}
$$

Tight-binding model: effective mass
Close to the I-point in the Λ-direction

$$
\begin{aligned}
& E_{k}=E_{0}-\beta-12 \gamma \cos ^{2} \pi \alpha= \\
&=E_{0}-\beta-12 \gamma\left(1-\frac{(\pi \alpha)^{2}}{2}\right)^{2}= \\
&=E_{0}-\beta-12 \gamma\left(1-(\pi \alpha)^{2}\right)= \\
&=E_{0}-\beta-12 \gamma+\gamma a_{0}^{2} k^{2} \\
& \begin{array}{l}
|\vec{k}|^{\mathbf{2}}=\frac{2 \pi}{a_{0}} \sqrt{3} \alpha \\
\frac{a_{0} k}{2 \pi \sqrt{3}} \\
m^{*}
\end{array}=\frac{d^{2} E}{\hbar^{2} d k^{2}}=\frac{2 \gamma a_{0}^{2}}{\hbar^{2}} ; \\
& \text { effechivg mass } \quad \begin{array}{l}
\text { Compare: Parabolic band } \\
\text { dispersion (e.g. free electron) }
\end{array} \\
& E=V_{0}+\frac{\hbar^{2} k^{2}}{2 m} \\
& m^{*}=\frac{\hbar^{2}}{2 \gamma a_{0}^{2}}
\end{aligned}
$$

Orbital structure and energy levels of Si atom

Energy levels of electrons in silicon

Orbital structure
Silicon: 1s ${ }^{\mathbf{2}} \mathbf{s s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{\mathbf{6}} \mathbf{3} \mathrm{s}^{\mathbf{2}} \mathbf{3} \mathrm{p}^{\mathbf{2}}$

Energy levels are filled according to Pauli principle

Energy levels of Si as a function of interatomic spacing

Few concepts from Solid State Physics 1. Adiabatic approximation

When valence and core electrons are separated, general Schrödinger equation for a condensed medium without spin

$H \Psi(R, r)=E \Psi(R, r)$

- Mass of ions >1000 times greater than mass of electrons
- Ion velocities >1000 times slower
- Electrons adjust 'instantaneously" to the positions of atoms
- Separate ion and electron motion (accuracy ~m/M)

$$
\begin{aligned}
& H_{L} \Phi(R)=E_{L} \Phi(R) \\
& H_{e} \psi(r, R)=E_{e} \psi(r, R)
\end{aligned}
$$

Few concepts from Solid State Physics

Hamiltonian for lattice motion (harmonic oscillations) :
$H_{L}=\sum_{l} \frac{p_{l}^{2}}{2 M_{l}}+\sum_{l, m} U_{0}\left(R_{l}^{0}-R_{m}^{0}\right)+\sum_{l, m} \frac{1}{2} C_{l, m}\left(u_{l}-u_{m}\right)^{2}+U_{a n h a r}$

Displacements show up as plane waves with weak interaction via anharmonicity:

$$
u_{k, \omega}=u_{0} e^{i k r-i \omega t}
$$

Energy in a mode:

$$
E(k, \omega)=\left(n(k, \omega)+\frac{1}{2}\right) \hbar \omega
$$

Equilibrium distribution (Bose Einstein):

$$
n(\omega)=\frac{1}{\exp \left(\frac{\hbar \omega}{k T}\right)-1}
$$

Phonon dispersion relation in GaAs

Quantum harmonic oscillator

Quantum harmonic oscillator: Hamiltonian

$$
H=\frac{p^{2}}{2 M}+\frac{1}{2} C x^{2}
$$

Solution gives resonance frequency (as in classical mechanics)

$$
\omega^{2}=\frac{C}{M}
$$

And quantum oscillation spectrum: (n may be considered as number of "quasiparticles")

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Quantization of lattice vibrations: phonons

For a single oscillator the frequency is fixed, but when many oscillators interact we have a number of modes (normal modes) ω_{k}

Each mode is occupied by n_{k} phonons $\quad E_{k}=\left(n_{k}+\frac{1}{2}\right) \hbar \omega_{k}$

For a 1D chain states are determined as: $\quad k=\frac{2 \pi n}{N a} ;$ for $\quad n=0, \pm 1, \ldots \pm \frac{N}{2}$ function
Occupancy of modes is given by Bose-statistics:

$$
n(\omega)=\frac{1}{\exp \left(\frac{\hbar \omega}{k T}\right)-1}
$$

$\langle n\rangle$

NNSE 508 EM Lecture \#8

Few concepts from Solid State Physics 3. One-electron (mean-field) approximation

Schrödinger equation for the electrons (no spin):

$$
H=\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m}+\sum_{i, l} V\left(\mathbf{r}_{i}-\mathbf{R}_{l}\right)+\sum_{i, j} \frac{e^{2} / 4 \pi \epsilon_{0}}{\left|\mathbf{r}_{i}-\mathbf{r}_{i}\right|}
$$

Introduce one-electron states, ψ_{i} :

$$
\sum_{i} V_{e}\left(r_{i}\right)+V_{e-e}
$$

$$
\psi(r, R)=\prod_{i} \psi_{i}\left(r_{i}, R\right)
$$

$$
H_{e i}=\frac{p_{i}^{2}}{2 m}+\sum_{l} V\left(r_{i}-R_{l}^{0}\right)+V_{e-p h}+V_{e-e} \underbrace{}_{\text {Small perturbation }}
$$

One-electron Schrödinger equation (each state can accommodate up to 2 electrons):

$$
\left[\frac{p^{2}}{2 m}+V(r)\right] \psi(r)=E \psi(r)
$$

$V(r)$ has periodicity of the crystal

