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Lecture  contents  

• A few concepts from Quantum Mechanics 

– Particle in a well 

– Two wells: QM perturbation theory  

– Many wells (atoms)  BAND formation  

– Tight-binding model 

• Solid state physics review  

– Approximations 
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Few concepts from Quantum Mechanics 

Electrons are waves:  

• Psi-function (, ) 

• Schrödinger equation 

• Hamiltonian  
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General (time dependent)Schrödinger equation: 

If Ĥ does not depend on time  

)()()(
2

)(ˆ
2

rErrV
m

rH  















_( , ) ( ) ;
Et

i
plane wave E

r t r e 


   

Time-independent Schrödinger equation: )()(ˆ rErH  

Uncertainty principle (Fourier  theorem+ w.-p. dualism) p x h 

2k x  Compare to wave packet k : 
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 Quantum Mechanics: particle in a single-dimensional well 
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No states 

Localized states (discrete spectrum ) 

Delocalized states  (continuous spectrum ) 

V(x)=V0       for x < 0 

V(x)=0       for 0 ≤ x ≤ L 

V(x)=V0       for  x > L 
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For infinite barrier,   V0  ∞ 
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Two wells 

First approximation of perturbation theory:  

 

What will happen if the wells are resonant ? 
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2211  CC Solution in the form: 

Negative 
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Two wells: energy level splitting 

• Resonant levels split  

• Splitting increases at small distances  
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Bonding and antibonding 

Antibonding Bonding 

Wave function 

Probability density function 

When two atoms brought together, 

wave functions interact each other 

and energy levels split. 
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Tight-binding model: periodic array of atoms 

What do we know? 

• Formation of energy band  

• Width depends mainly on interaction of the closest neighbors  

• Wavefunctions are renormalized  

Start with valence state:   )()( 000 rErHat  
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VHH atcryst 
Consider crystal Hamiltonian as 

atomic + perturbation : 

Solution in the form : ...1,0;;)( 00   mmaRRrC
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Tight-binding model: solution 

 
R

R RrC )(0

dr

1 2 ikR

RC N e
Applying (periodic) 

boundary conditions  

k – quasi wavevector is a quantum number 

to innumerate the electron states  

,     R - translation vector  
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Tight-binding model: solution 

Solution for band constructed from a 

single atomic orbital (s-band):   
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Diagonal element: 

When overlap is negligible: )()(|)( 00 RRrr  

Transfer integrals :   )(||)( 00 RrVr

  )(||)( 00 rVr

S-band: 
R

ikR

k eREE )(0 

Width of a 1D S-band = 2 
Over nearest neibors  
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Tight-binding model: s-band in FCC crystal  

FCC 1st Brillouin zone 
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Tight-binding model: effective mass 
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Compare: Parabolic band 

dispersion (e.g. free electron) 



NNSE 508 EM  Lecture #8      

12 

Orbital structure and energy levels of Si atom  

Orbital structure 

Energy levels of 

electrons in silicon 

3s 

3p 

Silicon: 1s22s22p63s23p2 

Energy levels are filled according to 

Pauli principle 
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Energy levels of Si as a function of interatomic spacing 

Interatomic spacing 

Attraction Repulsion 

Close Far 

3p2 

3s2 

Potential 

energy 

Low 

High 

When N Si atoms  

brought together 
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14 Few concepts from Solid State Physics 

1. Adiabatic approximation 

)()( RERH LL 

),(),( rRErRH 

• Mass of ions >1000 times greater than 

mass of electrons  

• Ion velocities >1000 times slower 

• Electrons adjust ‘instantaneously” to the 

positions of atoms 

When valence and core electrons are separated, general Schrödinger equation for a 

condensed medium without spin 

)(),(),( RRrrR  

• Separate ion and electron motion 

 (accuracy ~m/M) 

= HL + He 

),(),( RrERrH ee  
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Few concepts from Solid State Physics 

2. Phonons  
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Hamiltonian for lattice motion (harmonic oscillations) : 

Displacements show up as plane waves with weak 

interaction via anharmonicity: 

Phonon dispersion 

relation in GaAs 
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Energy in a mode: 

Equilibrium distribution (Bose Einstein): 
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Quantum harmonic oscillator: Hamiltonian  

 

 

Solution gives resonance frequency (as in 

classical mechanics) 

 

And quantum oscillation spectrum: 

(n  may be considered as number of 

“quasiparticles”) 
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For a single oscillator the frequency is fixed, but 

when many oscillators  interact we have a 

number of modes  (normal modes) 

 

 

Each mode is occupied by nk phonons 

 

 

 

For a 1D chain states are determined as: 

 

 

Occupancy of modes is given by Bose-statistics: 

 

Quantization of lattice vibrations: phonons 
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Few concepts from Solid State Physics 

3. One-electron (mean-field) approximation 
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Schrödinger equation for the electrons (no spin): 
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One-electron Schrödinger equation (each state can 

accommodate up to 2 electrons): 

V(r) has periodicity of the crystal 


