Lecture contents

- Bloch theorem
- k -vector
- Brillouin zone
- Almost free-electron model
- Bands
- Effective mass
- Holes

Translational symmetry: Bloch theorem

One-electron Schrödinger equation (each state can accommodate up to 2 electrons):

$$
\left[\frac{p^{2}}{2 m}+V(r)\right] \psi(r)=E \psi(r)
$$

If $V(r)$ is a periodic function:

$$
V(r)=V(r+R) \quad R=m_{1} a_{1}+m_{2} a_{2}+m_{3} a_{3}
$$

The solution is:

$$
\psi_{k}(r)=e^{i k r} u_{k}(r)
$$

where $u_{k}(r)$ is a periodic function:

$$
u_{k}(r)=u_{k}(r+R)
$$

From:

- Linearity of the Schrödinger equation
- Fourier theorem

Important :

$$
\left|\psi_{k}(r)\right|^{2}=\left|\psi_{k}(r+R)\right|^{2}
$$

Quasi-wavevector \boldsymbol{k} is analogous to a wavevector for free electrons ($\mathrm{V}=$ =const)

Bloch theorem: consequences

- Introduced k-vector quantum number for periodic potential (to enumerate states)
- Momentum is not conserved (not a quantum number), however quasi-momentum is conserved
- k-vector can be considered to lie in the first Brillouin zone

$$
\begin{aligned}
& {\left[\frac{p^{2}}{2 m}+V(r)\right] \psi(r)=E \psi(r)} \\
& \psi_{k}(r)=e^{i k r} u_{k}(r) \\
& E=\frac{\hbar^{2}}{2 m}\left(k+n \frac{2 \pi}{a}\right)^{2} \\
& {\left[\frac{\hbar^{2}}{2 m}\left(\frac{1}{i} \nabla+k\right)^{2}+V(r)\right] u_{k}(r)=E_{k} u_{k}(r)} \\
& u_{k}(r)=u_{k}(r+R) \\
& u_{n, k}(r), E_{n, k}
\end{aligned}
$$

- Electron occupying level with wavevector k in the band n has velocity (compare to group velocity)

$$
\square v_{n}(k)=\frac{1}{\hbar} \nabla_{k} E_{n}(k)
$$

Reciprocal space (1D)

First Brillouin zone:

$$
-\frac{\pi}{a_{0}}<k \leq \frac{\pi}{a_{0}}
$$

Diamond or zinc-blende structures

$$
\begin{aligned}
& a_{1}=\frac{a_{0}}{2}(0,1,1) \\
& a_{2}=\frac{a_{0}}{2}(1,0,1) \\
& a_{3}=\frac{a_{0}}{2}(1,1,0)
\end{aligned}
$$

Primitive unit cell (FCC):

- $4(\mathrm{Ga})+4(\mathrm{As})=8$ atoms in a cubic unit cell
- $1+1=2$ atoms in a primitive unit cell

Primitive unit cell in a reciprical space ($1^{\text {st }}$ Brillouin zone)

$$
\begin{aligned}
& b=m_{1} b_{1}+m_{2} b_{2}+m_{3} b_{3} \\
& b_{1}=2 \pi \frac{\left(a_{2} \times a_{3}\right)}{\left(a_{1} \times a_{2}\right) \bullet a_{3}}, b_{2}, b_{3}=\ldots
\end{aligned}
$$

Brillouin zone (FCC):

NNSE 508 EM Lecture \#9

Two wells: Illustration of Bloch Theorem

$$
\begin{aligned}
& \Delta E^{ \pm} \approx\left\langle\psi_{1}\right| V_{2}\left|\psi_{1}\right\rangle \pm\left\langle\psi_{1}\right| V_{1}\left|\psi_{2}\right\rangle \\
& \psi^{ \pm} \approx \frac{1}{\sqrt{2}}\left(\psi_{1} \pm \psi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \psi^{+}=\frac{1}{\sqrt{2}}\left[\psi_{0}(x)+\psi_{0}(x-a)\right] \\
& \psi^{-}=\frac{1}{\sqrt{2}}\left[\psi_{0}(x)-\psi_{0}(x-a)\right]
\end{aligned}
$$

$$
\text { How? } \psi_{k}(r)=e^{i k r} u_{k}(r)
$$

$$
\psi_{k}=\frac{1}{\sqrt{2}} \sum_{m=0}^{1} e^{i k m a} \psi_{0}(x-m a)=
$$

$$
=\frac{1}{\sqrt{2}} \sum_{m=0}^{1} e^{i k(m a+x-x)} \psi_{0}(x-m a)=\frac{1}{\sqrt{2}} e^{i k x} \sum_{m=0}^{n} e^{-i k(x-m a)} \psi_{0}(x-m a)=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}\left[\psi_{0}(x)+\psi_{0}(x-a)\right], \mathrm{k}=0 \\
\frac{1}{\sqrt{2}}\left[\psi_{0}(x)-\psi_{0}(x-a)\right], \mathrm{k}=\frac{\pi}{2}
\end{array}\right.
$$

$$
u_{k}(x)-\text { periodic! }
$$

$$
k \text { and } k+\frac{2 \pi}{a} \text { are equivalent }
$$

Free electrons

- Time-independent Schrödinger equation: $\hat{H} \psi(r) \equiv\left[-\frac{\hbar^{2}}{2 m} \Delta+V(r)\right] \psi(r)=E \psi(r) \quad V(r)=V_{0}=$ cons
- Solution - plane wave

$$
\psi(r)=e^{i k^{\prime} r} \quad \text { with energy } \quad E=V_{0}+\frac{\hbar^{2} k^{\prime 2}}{2 m}
$$

- Though free electron wave functions do not depend on the structure of solid, they can be written in the form of Bloch functions
- For any propagation vector k ' we can find

$$
k^{\prime}=k+G \quad \text { in the first Brillouin zone }
$$

- Then wave function (Bloch function) and energy:

$$
\begin{gathered}
\psi_{k}(r)=e^{i k r} e^{i G r} \\
E=V_{0}+\frac{\hbar^{2}}{2 m}|k+G|^{2}
\end{gathered}
$$

- For these wave functions we can plot the band

 diagram, which become periodic with $2 \pi / a$

NNSE 508 EM Lecture \#9

Nearly free electrons: bandgap

- Introduce weak periodic potential

$$
\begin{array}{ll}
{\left[-\frac{\hbar^{2}}{2 m} \Delta+V(r)\right] \psi(r)=E \psi(r)} & V(r+g)=V(r) \\
\text { or in a Fourier series } & V(r)=\sum_{G} V_{G} e^{i G r}
\end{array}
$$

- Let's simplify the problem: 1D potential with

$$
V(r)=V_{1} \cos \frac{2 \pi x}{a}
$$

- Electrons are waves : Bragg reflection occurs at

$$
k=n \frac{\pi}{a}, \quad p= \pm 1, \pm 2 \ldots
$$

- In quantum mechanics degenerate states $k= \pm \frac{\pi}{a}$ can split when perturbation is applied:
- Wave functions corresponding to split states will be linear combinations of $k= \pm \frac{\pi}{a}$

$$
\begin{aligned}
& e^{i k x}-e^{-i k x} \\
& \sim \sin (k x)
\end{aligned}
$$

$$
e^{i k x}+e^{-i k x}
$$

$$
\sim \cos (k x)
$$

Nearly free electrons: Bandgap

- By first-order perturbation theory:

$$
\Delta E^{ \pm} \approx\left\langle\psi^{ \pm}\right| V_{1} \cos \frac{2 \pi x}{a}\left|\psi^{ \pm}\right\rangle
$$

- Calculating the integral, find bandgap: $\quad E_{g}=E^{-}-E^{+}=\frac{2 V_{1}}{L} \int_{0}^{L} \cos \frac{2 \pi x}{a}\left(\cos ^{2} \frac{\pi x}{a}-\sin ^{2} \frac{\pi x}{a}\right) d x=V_{1}$
- Free electrons (plane waves) don't interact with the lattice much until wavevector becomes comparable with $1 / a$, then they are Bragg reflected and we have interference between a plane wave and its oppositely directed counterpart.
- These superpositions are standing waves with the same kinetic energy, but total energy is different

Nearly free electrons: 2D bands

The first three Brillouin zones of a

E-k curves for three different directions for parabolic band

Irrelevant to dimensionality, the following properties are valid:

- Within the first zone lie all points of allowed reduced wave vector
- "One-zone" and "many zone" descriptions are alternatives
- All the zones has the same "volume"
- The zone boundaries are the points of energy discontinuity

Nearly free electrons: 3D bands

First Brillouin zones for various 3D structures

Fig. 7.5b. First two zones of a simple cubic lattice.

1st

Fig. 7.5c. First zones of bodyand face-centred cubic lattices.

Body centred

Nearly free electrons: 3D bands

First Brillouin zone for fcc structure
Free electron bands of fcc structure

Electron bands in fcc Al compared to free electron bands (dashed lines)
Γ - point: $(0,0,0)$
X- point: $\frac{2 \pi}{a}(1,0,0)$
L- point: $\frac{\pi}{a}(1,1,1)$
K- point: $\frac{2 \pi}{a}\left(\frac{3}{4}, \frac{3}{4}, 0\right)$
W- point: $\frac{2 \pi}{a}\left(1, \frac{1}{2}, 0\right)$

From Hummel, 2000

With diamond structure

Γ - point: $(0,0,0)$
X- point: $\frac{2 \pi}{a}(1,0,0)$
L- point: $\frac{\pi}{a}(1,1,1)$
K- point: $\frac{2 \pi}{a}\left(\frac{3}{4}, \frac{3}{4}, 0\right)$ W- point: $\frac{2 \pi}{a}\left(1, \frac{1}{2}, 0\right)$

From Burns, 1985

With zinc-blende structure

NNSE 508 EM Lecture \#9

Band-structures of Si and Ge

Surfaces of constant energy in \vec{k}-space for the conduction band edge of silicon.

Surfaces of constant energy in \vec{k}-space for the conduction band edge of germanium: 8 half-ellipsoids of revolution centered at L points on the zone boundary

	m_{ℓ}^{*}	m_{t}^{*}	$\bar{m}_{\ell h}^{*}$	$\bar{m}_{h h}^{*}$
Si	0.92	0.19	0.16	0.52
Ge	1.59	0.082	0.043	0.34

NNSE 508 EM Lecture \#9

Most essential bands in diamond/ZB semiconductors

Free electrons and crystal electrons

Free electrons
Wave function: $\quad \psi_{k}(r)=\frac{1}{\sqrt{V}} e^{i k r}$
Kinetic energy: $\quad E=\frac{\hbar^{2} k^{2}}{2 m}$
Velocity or group velocity:

$$
\bar{v}=\int \psi^{*}\left(-\frac{i \hbar}{m} \nabla\right) \mu d r=\frac{\hbar k}{m}
$$

Dynamics (F - force):

$$
\frac{d v}{d t}=\frac{1}{m} F
$$

Force equation:

$$
F=\frac{d p}{d t}=\hbar \frac{d k}{d t}
$$

Electrons in solid

Dispersion near band extremum (isotropic and parabolic):

$$
E=\frac{\hbar^{2}\left(k-k_{0}\right)^{2}}{2 m^{*}}
$$

Group velocity: $\quad v=\frac{1}{\hbar} \nabla_{k} E(k)$
Velocity at band extremum: $\quad v=\frac{\hbar\left(k-k_{0}\right)}{m^{*}}$
Dynamics in a band:

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{1}{\hbar} \nabla_{k} \frac{d E}{d t}=\frac{1}{\hbar} \nabla_{k}(F v)=\frac{1}{\hbar^{2}}\left(\nabla_{k} \nabla_{k} E\right) F \\
& \frac{d v}{d t}=\frac{1}{m^{*}} F ; \quad \frac{1}{m^{*}}=\frac{1}{\hbar^{2}} \frac{\partial^{2} E}{\partial k^{2}} \quad\left(\text { if } \mathrm{m}^{*} \text { isotropic and parabolic }\right)
\end{aligned}
$$

Force equation:

$$
\frac{d E(k)}{d t}=\nabla_{k} E \frac{d k}{d t}=F v \quad F=\hbar \frac{d k}{d t}
$$

- It is convenient to treat top of the uppermost valence band as hole states
- $\underline{\text { Wavevector of a hole }=\text { total wavevector of }}$ the valence band (=zero) minus

$$
k_{h}=0-k_{e}
$$ wavevector of removed electron:

- Energy of a hole. Energy of the system increases as missing electron wavevector increases:
- Mass of a hole. Positive! (Electron

Hole energy:

Missing electron energy:
 effective mass is negative!)

$$
m_{h}^{*}=-m_{e}^{*} \quad E_{h}\left(k_{h}\right)=-E_{v}+\frac{\hbar^{2} k_{h}^{2}}{2 m_{h}^{*}}
$$

- Group velocity of a hole is the same as of the missing electron

$$
v_{h}=\frac{1}{\hbar} \nabla_{k} E_{h}\left(k_{h}\right)=\frac{1}{\hbar} \nabla_{k}\left[-E_{e}\left(-k_{e}\right)\right]=v_{e}
$$

- Charge of a hole. Positive! $\hbar \frac{d k_{e}}{d t}=-e \boldsymbol{\mathcal { E }}$

$$
e_{h}=-e_{e}=+e
$$

$$
\hbar \frac{d k_{h}}{d t}=e_{h} \mathcal{E}
$$

Example: electron-hole pairs in semiconductors

EHP generation : Minimum energy required to break covalent bonding is \mathbb{E}_{g}.

Charge carriers in a crystal

$$
\begin{gathered}
F=m a=+q E \\
\text { hole } \\
F=m a=-q E \\
\text { electron }
\end{gathered}
$$

Charge carriers in a crystal are not completely free. \rightarrow Need to use effective mass NOT REST MASS !!!

