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Translational symmetry: Bloch theorem

One-electron Schrddinger equation (each state can accommodate up to 2 electrons):
2

P
—+VI(r ry=Eew(r
o~ +V(r) w(r) = By (r)
If V(r) is a periodic function:
The solution is : _
o From:
W (r) =€ U, (r) - Linearity of the Schrodinger

equation
 Fourier theorem

where U, (r) is a periodic function:

U (r) =u, (r+R)

u, might be not a single valence electron
Important : function but is close to linear combination of

valence electron wavefunctions |Wk (I’)|2 _ |Wk (I’ n R)|2

Quasi-wavevector Kk is analogous to a
wavevector for free electrons (\VV=const)
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Bloch theorem: consequences 3

Introduced k-vector quantum number for pz
periodic potential (to enumerate states) {Zm +V(r)}ﬂ(r) =Ew(r)
Momentum is not conserved (not a quantum
number), however quasi-momentum is l//k (r) — e'kruk (r)
conserved

2
k-vector can be considered to lie in the first E = h_z(k + nz_ﬂJ
Brillouin zone 2m a

i 2
Solution with periodic boundary conditions h (1
P Y —(Tw kj V(1) |u, (r) = Eu, (r)
gives eigen-functions u, , for a given k which < _2m |
forms orthogonal basis (compare with Fourier Uy (r) = u, (r +R)
expansion) —
n —values enumerate bands |:> Uy, (r)’ En,k
Electron occupying level with wavevector k in
- 1

the band n has velocity (compare to group v, (k) _ %Vk En (k)
velocity)
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Reciprocal space (1D)

Ikr
Wavefunction of an electron in crystal : Wk (r) =€ Uk (r)
AE AE
1D free electrons “band structure” is: | |
| I
h’k® | |
E=— | |
2m i I
| |
-
> - Tz >
a k 4a k"b k
ik'r Ikr ikr
v (r)=e"u.(r)=e e Us « (r)
_ _ T \ \2“0' band
1D reciprocal lattice vector: b= N m periodic function
0
First Brillouin zone: _r <k < i
d, d
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Diamond or zinc-blende structures
Q‘c
5\ )

-~
\\

@, @

=N ol ;

B Ry ANy AR—.

0%

-
c
o
-
@
=
S
(3]
o
(S
22
=
o

 4(Ga) + 4(As)=8 atoms in a cubic
unit cell
« 1+1 =2 atoms in a primitive unit cell

Primitive unit cell in a reciprical space
(1t Brillouin zone)

b=mb, +m,b, + m,b,

(azxas)
=2 b, b, =...
g ﬂ(aixaz)'as o

Brillouin zone (FCC):
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Two wells: Hlustration of Bloch Theorem

V1 V2
T » AEiz(‘//1|V2|W1>i<W1|V1|‘//2>
b o— E
EY N 1
— -~ i
7 v r (y1ty>)

1
y* =—=[wo () +yo(x-a)] _
_ \15 v (r)=e"u, (r)
74 ﬁ[l//o (X) —yo(X— a)]
1 <& k = O,%
TZ |kmal//O (X—ma) =
" 1
1 _ . —[l//O(X)+l//0(X—a)], k=0
_ % Ze k(ma+x—x)l//O (X— ma) _ %elkx —ik(x—ma) \/5

[o() ~ws(x-2)], k=7

-

U, (x) — periodic!

2 i
k and k+2% are equivalent
a
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Free electrons

2
» Time-independent Schrodinger equation:  Hy(r) = {_h_A LV (r)}y/(r) =Ew(r) V(r) =V, =const
2m

hzk 12
2m

« Solution - plane wave W(r) — eik'r with energy E=V,+

» Though free electron wave functions do not Reciprocal lattice
depend on the structure of solid, they can be 7 pomireet
written in the form of Bloch functions

* For any propagation vector k’we can find
k'=k+G Inthe first Brillouin zone

» Then wave function (Bloch function) and

energy. o periodic function )
p(r)=e

.
2m

b b E}

|kre|Gr

Energy

E=Vy+—k+G[°

|
*la 2nla - xla 0 xla

- ——_——— S S S——

 For these wave functions we can plot the band  -27% ~x/a o
diagram, which become periodic with 2n/a NNSE 508 EM Lecture #9



Nearly free electrons: bandgap

2

* Introduce weak periodic potential {_h_A +V(r)}y/(r) = Ew(r)
2m

 Let’s simplify the problem: 1D potential with

just one Fourier component: 27T X

V(r) =V, cos—
a
« Electrons are waves : Bragg reflection occurs at

T
k=n—,
a

* In quantum mechanics degenerate states k = +Z
can split when perturbation is applied: a

» Wave functions corresponding to split states will
be linear combinations of | _ 7

a
ikx —ikx

/\/\/W Cant
~ sin(kx)

. . . S * ~Cos(k)c)
YW W v

p==x1+2...

—ikx

+e

V(r+g)=V(r)

orin a Fourier series V (r) = Z:VGeiGIr
G

: | &
[
! |
| |
|
l !
|
[
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|
| |
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' |
|
|
|
[ |
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| | 1
[Free }\ i
:eiectronl I
itheory | I
] | |
| | i
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i
| | y
| |
i | }
| | |
=3nr/a =2w/a =mw/a 0
—————— e
3rd zone 2nd zone 1st zone 2nd zone 3rd zone
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Nearly free electrons: Bandgap

« By first-order perturbation theory: AET ~ <wi |V, coszgax | l//i>

L
 Calculating the integral, find bandgap: E,=E -E"= Z—\L/l_‘.cos 27X (cosz X _in? —de vV,
a a a
0

* Free electrons (plane waves) don’t interact with the

lattice much until wavevector becomes comparable with M omentum-Energy Relation
1/a, then they are Bragg reflected and we have
interference between a plane wave and its oppositely g - 7
directed counterpart. E,, / E——

o
« These superpositions are standing waves with the £ '
same Kinetic energy, but total energy is different

_ma  Momentum (kY 3
ikx —ikx

~si11(kx)

AAAAAL
S o e o o
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Nearly free electrons:

The first three Brillouin zones of a
simple square lattice
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2D bands

E-k curves for three different
directions for parabolic band

Irrelevant to dimensionality, the following properties are valid:
 Within the first zone lie all points of allowed reduced wave vector

* “One-zone” and “many zone” descriptions are alternatives

» All the zones has the same “volume”

« The zone boundaries are the points of energy discontinuity

From Cusack 1963
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Nearly free electrons: 3D bands H

First Brillouin zones for various 3D structures

Fig. 7.56. First two zones ol a

S
@

simple cubic lattice. Lo - _ L
{5t .
2nd
Fig. 7.5c. First zones of body-
and face-centred cubic lattices.
Face centred Body centred

Fig. 7.5d. First two zones of a
hexagonal lattice.

From Cusack 1963 NNSE 508 EM Lecture #9



Nearly free electrons: 3D bands
Free electron bands of fcc structure

First Brillouin zone for fcc structure

k

74

e -

A

\/

I'- point: (0,0,0)
X- point: %it (1,0,0)
L- point: T (1,1,

K- point: < 2“ (2 3 O)

W- point: <] 2“ (1

0)

rE .
f;fg] 4, 42 ; .ﬁ' P
o0 :1 :r s g !
7
AIJI AIA!
d ":? z&
I 5 nh
g "N, X;
s‘ xs 14¢ a‘az
3 _ A 55
3 W, W
2 . W, XX
w 1 J:|,!‘_ 14
0 .
a4, 5', III?
Z
4, A /
I
0 A
r X X w w L 4 r r L §

12

Electron bands in fcc Al compared to free electron bands (dashed lines)

E (RYDBERGS)

(0,00) (34.380) (I

00 (g0l L01/2) (2,262}
12} [
} /

it FERMI LEVEL

X L]

From Hummel, 2000
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Band structure for several fcc semiconductors
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With zinc-blende structure
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From Burns, 1985
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Band-structures of Si and Ge
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Surfaces of constant energy in‘ﬁ-space for

the conduction band edge of silicon.

Surfaces of constant energy in ?—space for

the conduction band edge of germanium:
8 half-ellipsoids of revolution centered
at L points on the zone boundary
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0.34
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1.59
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0.082
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Most essential bands in diamond/ZB 15
semiconductors

Energy GaAs

valley

A

Wave vector
Heavy holes

Light holes

/\Split-uff band

From www.ioffe.ru NNSE 508 EM Lecture #9



Free electrons and crystal electrons 10

Free electrons

Wave function: v, (r)= 1 '
W
hk?
Kinetic energy: E=——
2m

\elocity or group velocity:

szl//*[—%V}//dr =%

Dynamics (F — force):
dv._ 1 F

dt m

Force equation:

- _dp_ dk
dt dt

Electrons in solid

Wave function: v, (r)=¢e""u (r)

Dispersion near band

2 2
extremum e 17 (k—ko)
(isotropic and parabolic): 2m=*

: 1
Group velocity: V= %Vk E(k)
Velocity at band extremum: ~ _ n(k —Kp)
D
Dynamics in a band:
dv. 1_ dE 1 1
dthkdthk()hg(kk)
ﬁ—i 1 _1 O°E (if m* isotropic and parabolic)
dt m* ! m* h2 akZ p p
Force equation:
K
AR g gk _ Fop
dt "t dt
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Holes

It is convenient to treat top of the
uppermost valence band as hole states

Wavevector of a hole = total wavevector of
the valence band (=zero) minus
wavevector of removed electron:

Energy of a hole. Energy of the system
increases as missing electron wavevector
increases:

Mass of a hole. Positive! (Electron
effective mass is negative!)

*

mh - —me

Group velocity of a hole is the same as of
the missing electron

Charge of a hole. Positive! hddﬁ =&
t
dk

h —h — eh(c;

dt

kh = O— ke
En (ky) = —Eq (k,) :

21,2
(k) =B+ VRN
2m

En(ky) =-E, +

17

Hole energy:

E

N S

k;,

Missing electron energy:

k,

e

n°kg

*

my

— VL En (k) = Vi Eok)]=v
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Example: electron-hole pairs in semiconductors

Hole (h*)

Si atom

Electron (e)

EHP generation : Minimum energy required to break
covalent bonding is E .
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Charge carriers in a crystal

F=ma=+qE
hole

F=ma=-qE
electron

Charge carriers in a crystal
are not completely free. =
Need to use effective mass
NOT REST MASS !l!
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