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Lecture  contents  

• Bloch theorem 

• k-vector 

• Brillouin zone 

• Almost free-electron model 

• Bands 

• Effective mass 

• Holes 
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Translational symmetry: Bloch theorem 
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If  V(r)  is a periodic function: 

One-electron Schrödinger equation (each state can accommodate up to 2 electrons): 
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The solution is : 
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where uk (r)  is a periodic function: 

From: 

• Linearity of the Schrödinger 

equation  

• Fourier  theorem 
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Quasi-wavevector k is analogous to a 

wavevector for free electrons (V=const)  

uk might be not a single valence electron 

function but is close to linear combination of 

valence electron wavefunctions 

Important : 
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• Introduced k-vector quantum number for 

periodic potential (to enumerate states) 

• Momentum is not conserved (not  a quantum 

number), however quasi-momentum is 

conserved   

• k-vector can be considered to lie in the first 

Brillouin zone  

• Solution with periodic boundary conditions 

gives eigen-functions un,k  for a given k which 

forms orthogonal basis (compare with Fourier 

expansion) 

• n –values enumerate  bands 

• Electron occupying level with wavevector k in 

the band n has velocity (compare to group 

velocity) 

 

Bloch theorem: consequences 
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Reciprocal space (1D) 
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1D reciprocal lattice  vector : 
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1D free electrons “band structure” is: 
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5 Diamond or zinc-blende structures   

• 4(Ga) + 4(As)=8  atoms in a cubic 

unit cell 

• 1+1 =2 atoms in a primitive unit cell 

Brillouin zone (FCC): 

Primitive unit cell (FCC): 
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Two wells: Illustration of Bloch Theorem  
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Free electrons 
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• Time-independent Schrödinger equation: 

 

 

• Solution - plane wave 

 

• Though free electron wave functions  do not 

depend on the structure of solid, they can be 

written in the form of Bloch functions 

• For any propagation vector k’ we can find 

  in the first Brillouin zone 

 

• Then wave function (Bloch function)  and 

energy: 

 

 

 

 

 

• For these wave functions we can plot the band 

diagram, which become periodic with 2/a  

with energy 
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Nearly free electrons: bandgap 
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• Introduce weak periodic potential 

 

 

• Let’s simplify the problem: 1D potential with  

just one Fourier component: 

 

• Electrons are waves : Bragg reflection occurs at  

 

 

• In quantum mechanics degenerate states         

can split when perturbation is applied: 

• Wave functions corresponding to split states will 

be linear combinations of   : 

or in  a Fourier series  
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Nearly free electrons: Bandgap 

• By first-order perturbation theory:  

 

 

• Calculating the integral, find bandgap:  

 

• Free electrons (plane waves) don’t interact with the 

lattice much until wavevector becomes comparable with 

1/a, then they are Bragg reflected and we have 

interference between a plane wave and its oppositely 

directed counterpart. 

 

• These superpositions are standing waves with the 

same kinetic energy, but total energy is different 

1

2
| cos |

x
E V

a


    

2 21
1

0

2 2
cos cos sin

L

g

V x x x
E E E dx V

L a a a

     
     

 



NNSE 508 EM  Lecture #9      

10 
Nearly free electrons: 2D bands 

Irrelevant to dimensionality, the following properties are valid:  

• Within the first zone lie all points of allowed reduced wave vector 

• “One-zone” and “many zone” descriptions are alternatives 

• All the zones has the same “volume” 

• The zone boundaries are the points of energy discontinuity  

E-k curves for three different 

directions for parabolic band  

From Cusack 1963 

The first three Brillouin zones of a 

simple square lattice 
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Nearly free electrons: 3D bands 

First Brillouin zones for  various 3D  structures 

From Cusack 1963 
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Nearly free electrons: 3D bands 

Electron bands in fcc Al compared to free electron bands (dashed lines) 

First Brillouin zone for fcc structure 
Free electron bands of fcc structure 

From Hummel, 2000 
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13 Band structure for several fcc semiconductors 

With diamond structure 

From Burns, 1985 

With zinc-blende structure 
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Band-structures of Si and Ge 
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Most essential bands in diamond/ZB 

semiconductors   
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From www.ioffe.ru 

GaAs 
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Free electrons and crystal electrons 

Free electrons  
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(isotropic and parabolic): 
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Dynamics (F – force): 
Dynamics in a band: 
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Force equation: 

dt

dk

dt

dp
F 

Force equation: 

dt

dk
F Fv

dt

dk
E

dt

kdE
k 

)(



NNSE 508 EM  Lecture #9      

17 
Holes 

• It is convenient to treat top of the 

uppermost valence band as hole states  

• Wavevector of a hole = total wavevector of 

the valence band (=zero) minus 

wavevector of removed electron:  

• Energy of a hole. Energy of the system 

increases as missing electron wavevector 

increases:  

 

• Mass of a hole. Positive! (Electron 

effective mass is negative!) 

 

 

• Group velocity of a hole is the same as of 

the missing electron 

 

• Charge of a hole. Positive!  
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Hole energy: 
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Example: electron-hole pairs in semiconductors 

Electron (e-) 

Si atom 

Hole (h+) 

Eg 

E

c 

Ev 

EHP generation : Minimum energy required to break 

                               covalent bonding is Eg. 
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Charge carriers in a crystal 

V 

E 
Si atom 

qEmaF 

hole 

qEmaF 

electron 

Charge carriers in a crystal 

are not completely free.  

Need to use effective mass 

NOT REST MASS !!!  

+ - 


