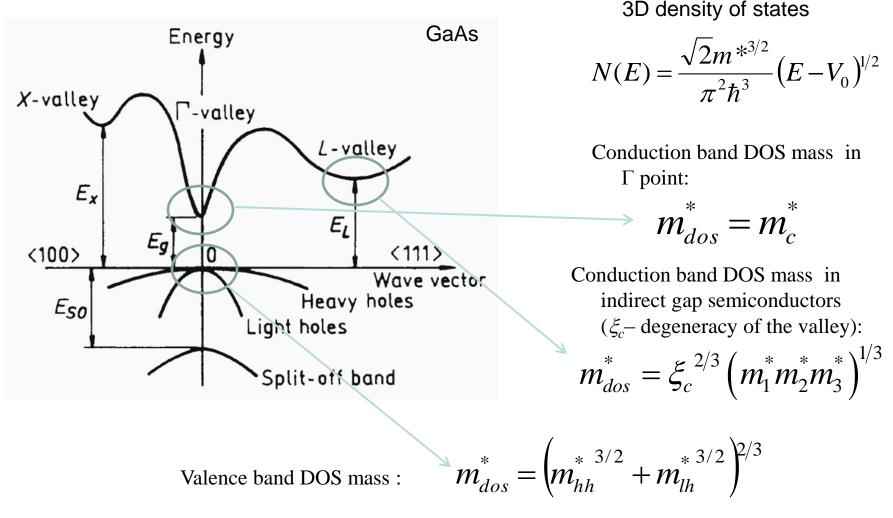

Lecture contents

- Semiconductor bands
- Effective mass
- Holes in semiconductors
- Semiconductor alloys

Group 2a					
Beryllium 9.0122		Group 3a	Group 4a	Group 5a	Group 6a
Magnesium 24.305		5 B Boron 10.811	Carbon 12.011	7 N Nitrogen 14.0067	Oxygen 15.9994
	Group 2b	Aluminum 26.9815	Silicon 28.086	Phosphorus 30.9738	16 Sulfur 32.066
	30 Zn Zinc 65.39	Gallium 69.72	Germanium 72.61	Arsenic 74.9216	Selenium 78.96
	Cadmium 112.41	49 In Indium 114.82	50 Sn 118.71	Sb Antimony 121.76	Tellurium 127.60
	80 Hg Mercury 200.59	81 T Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	Polonium (210)

1



Band-structure of Si

Conduction band valleys in Si $k_{\min} = \frac{2\pi}{a_0}(0, 0, 0.85) = (0, 0, k_{\min})$ $E(\mathbf{k}) = \frac{\hbar^2 (k_z - k_{\min})^2}{2m_1} + \frac{\hbar^2 (k_x^2 + k_y^2)}{2m_t}$ $ar{m}^*_{hh}$ m_t^* $ar{m}^*_{\ell h}$ m_{ℓ}^* Si 0.19 0.16 0.52 0.92 Ge 1.59 0.082 0.043 0.34

Density of states in 3D and DOS effective mass

Effective mass density of states

Free electrons and crystal electrons

Free electrons

Wave function:

$$\psi_k(r) = \frac{1}{\sqrt{V}} e^{ikr}$$

Kinetic energy:

$$\overline{v} = \int \psi^* \left(-\frac{i\hbar}{m} \nabla \right) \psi dr = \frac{\hbar k}{m}$$

 $E = \frac{\hbar^2 k^2}{2m}$

Dynamics (F - force):

$$\frac{dv}{dt} = \frac{1}{m}F$$

Force equation:

$$F = \frac{dp}{dt} = \hbar \frac{dk}{dt}$$

Electrons in solid

Wave function:

$$\psi_k(r) = e^{ikr} u_k(r)$$

 $E = \frac{\hbar^2 (k - k_0)^2}{2m^*}$

Dispersion near band extremum (isotropic and parabolic):

Group velocity:

Velocity at band extremum:

$$v = \frac{1}{\hbar} \nabla_k E(k)$$
$$v = \frac{\hbar (k - k_0)}{m^*}$$

Dynamics in a band:

$$\frac{dv}{dt} = \frac{1}{\hbar} \nabla_k \frac{dE}{dt} = \frac{1}{\hbar} \nabla_k (Fv) = \frac{1}{\hbar^2} (\nabla_k \nabla_k E) F$$
$$\frac{dv}{dt} = \frac{1}{m^*} F; \quad \frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \quad \text{(if m* isotropic and parabolic)}$$

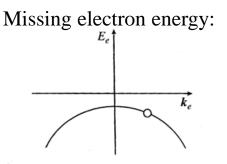
Force equation:

$$\frac{dE(k)}{dt} = \nabla_k E \frac{dk}{dt} = Fv \qquad \qquad F = \hbar \frac{dk}{dt}$$

Holes

- It is convenient to treat top of the uppermost valence band as <u>hole</u> states
- <u>Wavevector of a hole</u> = total wavevector of the valence band (=zero) minus wavevector of removed electron:
- <u>Energy of a hole</u>. Energy of the system increases as missing electron wavevector increases:
- <u>Mass of a hole</u>. Positive! (Electron effective mass is negative!)


con


$$E_e(k_e) = E_v + \frac{\hbar^2 k_e^2}{2m_e^*}$$

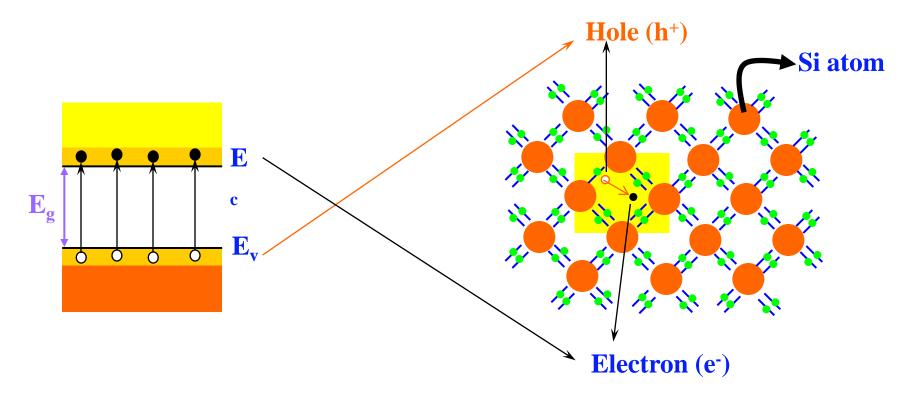
 $m_h^* = -m_e^*$ $E_h(k_h) = -E_v + \frac{\hbar^2 k_h^2}{2m_h^*}$

 $k_{h} = 0 - k_{\rho}$

 $E_h(k_h) = -E_\rho(k_\rho)$

Hole energy:

• <u>Group velocity</u> of a hole is the same as of the missing electron

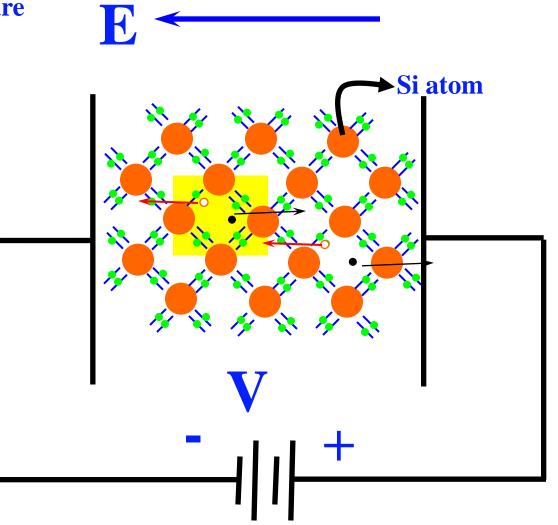

$$v_h = \frac{1}{\hbar} \nabla_k E_h(k_h) = \frac{1}{\hbar} \nabla_k \left[-E_e(-k_e) \right] = v_e$$

• <u>Charge of a hole</u>. Positive! $\hbar \frac{dk_e}{dk_e} = -e\mathcal{E}$

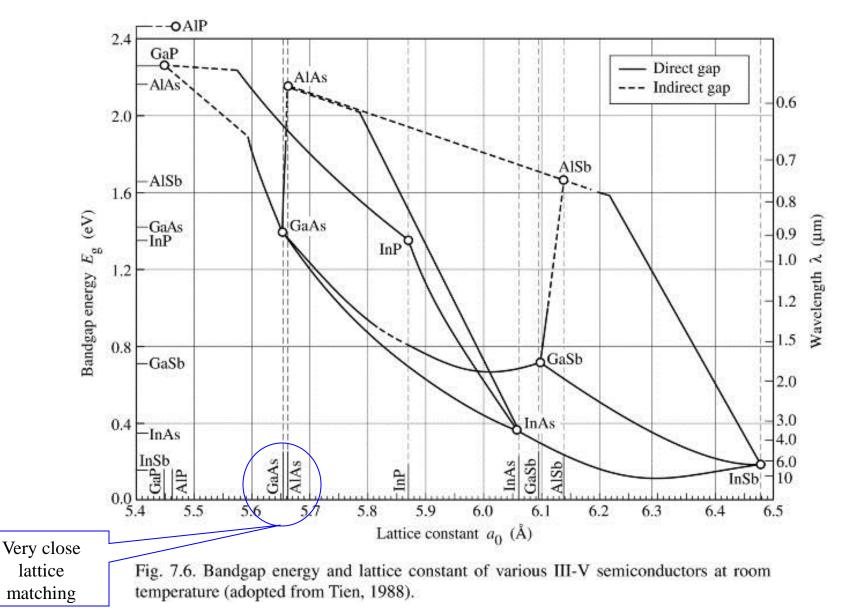
$$\hbar \frac{dt}{dt} = e_h \mathcal{E}$$

 $e_{h} = -e_{e} = +e$

Example: electron-hole pairs in semiconductors


EHP generation : Minimum energy required to break covalent bonding is E_g .

6


Charge carriers in a crystal

• Charge carriers in a crystal are not completely free. → Need to use effective mass NOT REST MASS !!!

• Electron and hole currents have to be treated separately in devices

Bandgap and lattice constants

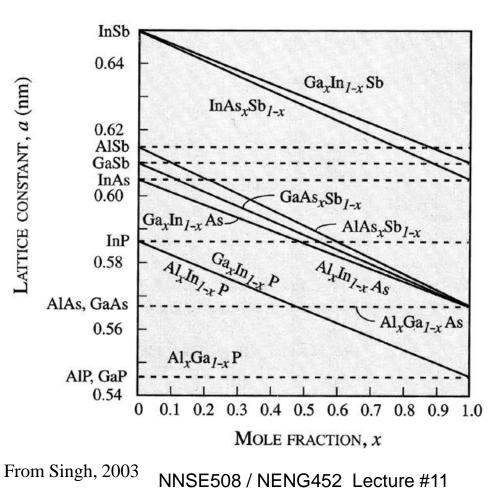
Alloys

<u>Vegard's law</u> for lattice constant of alloy Works for

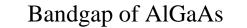
- Random alloys
- With constant crystal structure

<u>Average periodic potential</u> of a "virtual crystal"

$$V_{alloy} = xV_A + (1-x)V_B$$


Band extrema follow almost linear dependence with slight bowing due to alloy disorder

$$E_g^{alloy} = a + bx + cx^2$$


Effective mass for a given extremum

$$\frac{1}{m_{alloy}^{*}} = \frac{x}{m_{A}^{*}} + \frac{1 - x}{m_{B}^{*}}$$

$$A_x B_{1-x}$$
$$a_{alloy} = x a_A + (1-x) a_B$$

Bandgap in AlGaAs

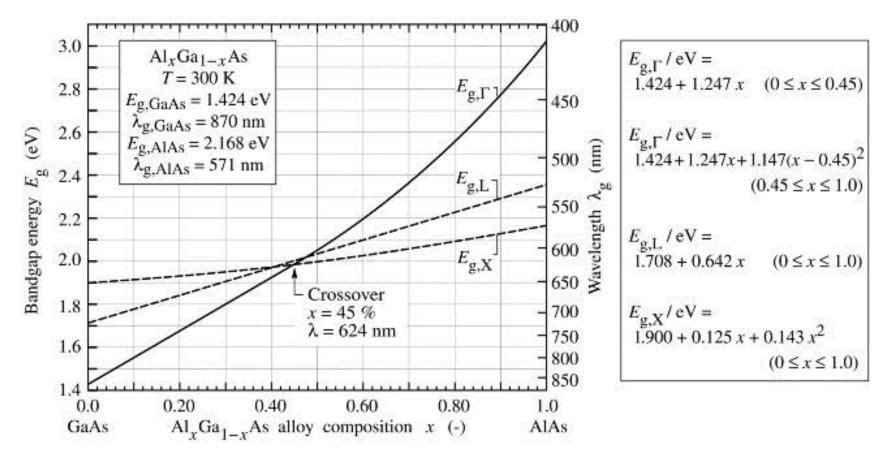
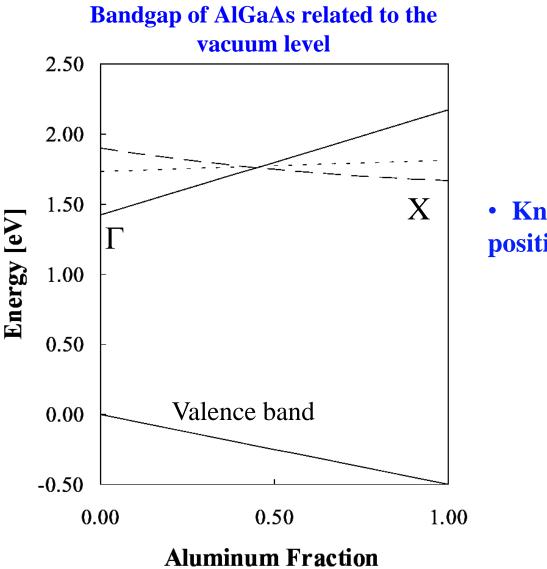
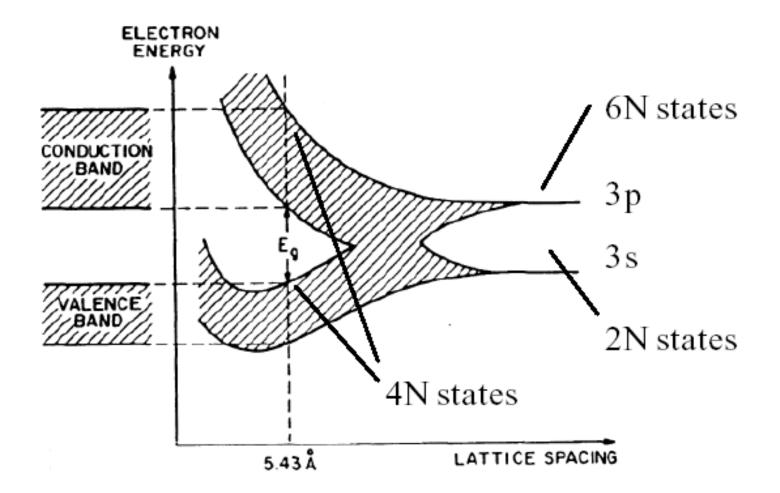



Fig. 7.7. Bandgap energy and emission wavelength of AlGaAs at room temperature. E_{Γ} denotes the direct gap at the Γ point and E_{L} and E_{X} denote the indirect gap at the L and X point of the Brillouin zone, respectively (adopted from Casey and Panish, 1978).

Bandgap in AlGaAs


• Knowledge of band edge positions is important in junctions

Temperature dependence of the energy bandgap

$$E_{g}(T) = E_{g}(0) - \frac{\alpha T^{2}}{T + \beta}$$

			Germanium	Silicon	GaAs
Bandgap at $T = 0K$	$E_g(0)$	[eV]	0.7437	1.166	1.519
Coefficient α		[10 ⁻⁴ /K]	4.774	4.73	5.405
Coefficient B		[K]	235	636	204

Energy bands in semiconductors

Bandgap dependence on temperature is mostly due to thermal expansion

Lecture recap

- In semiconductors extrema of CB and VB are most important
- VB in the BZ center is degenerate: heavy holes and light holes
- Holes as "independent" quasi-particles
- Vegards' law
- Bandgap dependence on temperature