## Lecture contents

- Magnetic properties
- Diamagnetism
- Band paramagnetism
- Atomic paramagnetism

1

#### Magnetic units

Magnetic induction (tesla):

B can be called magnetic induction, magnetic induction field or magnetic flux density.

Magnetic field (ampere / metre):

The magnetic field H is often expressed in units of  $\mu_0 H$ , hence in tesla (T) or its submultiple, the gamma ( $\gamma$ ) which is equal to 10<sup>-9</sup> T. A field of 1 A.m<sup>-1</sup> corresponds to 1.2566 µT.

Magnetisation (ampere/metre):

Magnetic moment (ampere-square metre or joule per tesla):  $1 \text{ A} \cdot \text{m}^2 = 1 \text{ J} \cdot \text{T}^{-1} = 10^3 \text{ emu}$ . u Specific magnetic moment:

Note that, sometimes, magnetisation (M), magnetic moment (m) and specific magnetic moment ( $\sigma$ ) are expressed in tesla, Weber-meter and Weber-meter per kilogram, respectively : the reason is that we have adopted as definition of magnetisation (dm/dV):  $M = B / \mu_0 - H$ , whereas some authors call "magnetisation" the quantity  $B_i = J = B - \mu_0 H$ which is usually called "(magnetic) polarisation".

$$1 Wb = T \cdot m^2 \qquad 1 T = \frac{V \cdot s}{m^2} \qquad 1H = \frac{Wb}{A} = \frac{T \cdot m^2}{A}$$

From Tremolet de Lacheisserie, 2005

$$1T = 10^{4} \text{ gauss } (=1 \text{ Wb} \cdot \text{m}^{-2}).$$

A.m<sup>-1</sup> = 
$$4\pi \times 10^{-3}$$
 cersted.

$$1 \text{ A.m}^{-1} = 10^{-3} \text{ emu.cm}^{-3}$$
.

$$A.m^2.kg^{-1} = 1 \text{ emu.}g^{-1}$$
. M/p

#### Magnetic susceptibility

~

SI: 
$$\begin{cases} \vec{B} = \mu_0 \left( \vec{H} + \vec{M} \right) \\ \vec{B} = \mu_0 \mu_R \vec{H} \\ \vec{M} = \chi \vec{H} \\ \mu_R = 1 + \chi \end{cases}$$
 CGS: 
$$\begin{cases} \vec{B} = \vec{H} + 4\pi \vec{M} \\ \vec{B} = \mu_R \vec{H} \\ \vec{M} = \chi \vec{H} \\ \mu_R = 1 + 4\pi \chi \end{cases}$$

susceptibility  $\chi$ :

$$\chi = \frac{M}{H} \frac{\text{emu}}{\text{Oe} \cdot \text{cm}^3} \cdot$$

Note that, since *M* has units  $A \cdot cm^2/cm^3$ , and *H* has units A/cm,  $\chi$  is actually dimensionless. Since *M* is the magnetic moment per unit volume,  $\chi$  also refers to unit volume and is sometimes called the *volume susceptibility* and given the symbol  $\chi_v$  to emphasize this fact. Other susceptibilities can be defined, as follows:

 $\chi_{\rm m} = \chi_{\rm v}/\rho = {\rm mass}$  susceptibility (emu/Oe g), where  $\rho = {\rm density}$ ,  $\chi_{\rm A} = \chi_{\rm m} A = {\rm atomic}$  susceptibility (emu/Oe g atom), where  $A = {\rm atomic}$  weight,  $\chi_{\rm M} = \chi_{\rm m} M' = {\rm molar}$  susceptibility (emu/Oe mol), where  $M' = {\rm molecular}$  weight.

From Cullity, 2009

## **Magnetic properties of materials**

- M magnetization or magnetic dipole density
- Diamagnetic  $\chi \sim -10^{-5}$
- Paramagnetic  $\chi \sim +10^{-5}$
- Ferromagnetic spontaneous magnetization, large  $\chi$

| Material             | $\chi_M$ (dim'less)   |
|----------------------|-----------------------|
| Bi                   | $-1.6 \times 10^{-4}$ |
| Ag                   | $-2.4 \times 10^{-5}$ |
| $H_2O$               | $-9.0 \times 10^{-6}$ |
| Nb $(4K)$            | -1                    |
| Na                   | $8.5 \times 10^{-6}$  |
| Al                   | $2.1 \times 10^{-5}$  |
| Pt                   | $2.8 \times 10^{-4}$  |
| $\operatorname{Gd}$  | 0.48                  |
| Fe (annealed)        | 20,000                |
| NdFe <sub>14</sub> B | $\sim 0$              |



# **Diamagnetism (classical)**



# **Diamagnetism (classical) contd.**

- Small magnetic field-induced magnetic dipole moment:
- Now we can apply the result to spherical closed-shell atom
  - Averaging over 3D gives mean square radial distance
  - Sum over all Z electrons in the atom
  - Sum over all atoms in a unit volume, density N, to obtain magnetization
  - Finally susceptibility

$$\chi = \frac{M}{H} = -\frac{q^2 Z N \mu_0}{6m} \langle R^2 \rangle$$

$$\mu_m = -\frac{q^2 R^2}{4m} \mu_0 H$$

$$\left\langle R^{2} \right\rangle = \frac{3}{2} R^{2} \quad \begin{cases} \left\langle x^{2} \right\rangle + \left\langle y^{2} \right\rangle = R^{2} \\ \left\langle x^{2} \right\rangle = \left\langle y^{2} \right\rangle = \left\langle z^{2} \right\rangle = \frac{1}{3} \left\langle R^{2} \right\rangle \end{cases}$$

$$M = -\frac{q^2 Z N}{6m} \mu_0 H \left\langle R^2 \right\rangle$$

Larmor or Langevin diamagnetic susceptibility

- All atoms and ions display diamagnetic response
- Almost independent of temperature

#### Molar susceptibilities of some atoms and ions ( $x10^{-6}$ cm<sup>3</sup>/mole)

 Molar susceptibility is often used to describe magnetism of atoms (should be multiplied by molar volume to obtain dimensionless susceptibility)

| Ion | $\chi_{\mathbf{M}}$ | Atom | $\chi_{\mathbf{M}}$ | lon | $\chi_{\mathbf{M}}$ |
|-----|---------------------|------|---------------------|-----|---------------------|
|     |                     | He   | -1.9                | Li+ | -0.7                |
| F-  | -9.4                | Ne   | -7.2                | Na+ | -6.1                |
| Cl- | -24.2               | А    | -19.4               | K+  | -14.6               |
| Br− | -34.5               | Kr   | -28                 | Rb+ | -22.0               |
| I-  | -50.6               | Xe   | -43                 | Cs+ | -35.1               |
|     |                     |      |                     |     |                     |

From Burns, 1990

## Paramagnetism

- Contrary to diamagnetism, paramagnetism arises from non-zero magnetic moments:
  - Free electron (Pauli) spin paramagnetism
  - Langevin atomic paramagnetism
- An electron has an intrinsic magnetic dipole moment associated with its spin S, equal to Bohr magneton:

- We can expect that the magnetic dipoles will rotate towards low-energy state  $(U = from \vec{\mu} \cdot \vec{B} \ to \ + \vec{\mu} \cdot \vec{B})$
- The fraction of electrons with magnetic moments parallel to magnetic field exceeds the anti-parallel fraction by  $\approx \frac{\mu_B \mu_0 H}{k_B T}$
- For *n* free electrons, the magnetization
- But we need to take band structure into account !

$$= 2.0023$$

$$\int \frac{1}{\sqrt{2}} = -\frac{1}{2}$$

$$\int \frac{q}{2m} = -\frac{q}{2m} \frac{1}{2m}$$

$$\mu_B = \frac{q\hbar}{2m} = 9.274 \cdot 10^{-24} \left\{ \frac{J}{T} \right\} = \left\{ A \cdot m^2 \right\}$$

For B =1 T (H = 8x10<sup>5</sup> A/m)  $U = \mu_B B = 58 \ \mu eV \rightarrow 0.67 \text{ K}$ 

Field alignment is weak !

 $M \approx n\mu_B \frac{\mu_B \mu_0 H}{k_B T}$ 

## **Paramagnetism of free spins**

Magnetization

 $M \approx n\mu_B \frac{\mu_B \mu_0 H}{k_B T}$ 

is ~100 times higher than observed in real materials

• In a band only a "thermal" fraction of electrons contributes to paramagnetism (compare to transport)  $\approx \frac{k_B T}{E_F}$ 



Magnetization is

$$M \approx n\mu_B \frac{\mu_B \mu_0}{k_B T_F} H$$

 Similar to transport, more accurate averaging over the distribution function gives susceptibility

• For example, for Na  $\chi = -8.4 \cdot 10^{-6}$ 

$$\chi = \frac{3\mu_0}{2} \frac{n\mu_B^2}{k_B T_F}$$

From Burns, 1990

## Langevin atomic paramagnetism

- Similar to free spins, if an atom has a magnetic moment  $\mu_{\it eff}$ , it can align along the magnetic field
- Magnetization of a material with atomic density *N* is (averaging included)  $M = \frac{1}{3} N \mu_{eff} \frac{\mu_{eff} \mu_0 H}{k T}$



• And susceptibility

$$\chi = \frac{\mu_0}{3} \frac{N \mu_{eff}^2}{k_B T}$$



Curie law for paramagnetics With Curie constant

• Atom with orbital, spin and total angular momenta, L,S, and J = L+S, will have magnetic moment

$$\mu_{eff} = g_J \mu_B J$$

With Lindé g-factor

$$g_J = 1 + \frac{J^2 + S^2 - L^2}{2J^2}$$

- Complications
  - Quantum mechanical averaging of m<sub>J</sub>
  - lons
  - Quenching of orbital momentum in the crystal field (Stark splitting of 2L+1 degeneracy)

$$C = \frac{N\mu_0\mu_{eff}^2}{3k_B}$$

$$\left[=\mu_B \left\langle L+2S \right\rangle\right] = 2.0023$$

Often "spin-only" moment is used with convention:  $g_J=2, L=0, J=S$ and maximum moment  $\mu_H=2J\mu_B$ 

Need to be careful with scientific texts!

## **Atomic paramagnetism - Quantum theory**



• This results in classic susceptibility

$$\chi = \frac{\mu_0}{3} \frac{N \mu_{eff}^2}{k_B T}$$

with quantum averaged

$$\mu_{eff}^2 = \left(g_J \mu_B\right)^2 J(J+1)$$

### **Magnetic moments of ions**

|      |                         |      |                 |             |              |            |                 |                       |           |                                   |               |                  | 0                     |                        |                                |                                     |                                      |            |
|------|-------------------------|------|-----------------|-------------|--------------|------------|-----------------|-----------------------|-----------|-----------------------------------|---------------|------------------|-----------------------|------------------------|--------------------------------|-------------------------------------|--------------------------------------|------------|
| f-sh | ell ( <i>l</i>          | = 3  | <u>)</u><br>1 ( | 0 –         | 1 -          | 2 -        | 35              | $L =  \Sigma m $      | 2.5       | $^{+1}L_J$                        | ø.            |                  | Ion                   | <u>4f</u> <sup>n</sup> | State                          | $\frac{\mu_{\rm eff}}{\mu_{\rm B}}$ | $\frac{\mu_{\rm eff}}{({\rm Exp.})}$ |            |
|      | ,=5                     | ,    | .,              |             | .,           | -,         |                 | 2-12.                 | · / ·     |                                   | 6)            |                  | $La^{3+}$             | 4f <sup>0</sup>        | $^{1}S_{0}$                    | 0                                   | 0                                    |            |
| 0    |                         |      |                 |             |              |            | 0               | 0                     | 0         | $^{1}S_{0}$                       | 0             | La <sup>3+</sup> | $Ce^{3+}$             | 4f <sup>1</sup>        | $^{2}$ Ec/2                    | 2.54                                | 2.4                                  |            |
| 1    | ŧ                       |      |                 |             |              |            | 1/2             | 3                     | 5/2       | ${}^{2}F_{5/2}$                   | 6/7           | Ce <sup>3+</sup> | $Pr^{3}+$             | 4f <sup>2</sup>        | <sup>3</sup> H                 | 3 58                                | 3.5                                  |            |
| 2    | ŧ                       | ŧ    |                 |             |              |            | 1               | 5                     | 4         | ${}^{3}H_{4}$                     | 4/5           | $Pr^{3+}$        | Nd <sup>3</sup> +     | 4f <sup>3</sup>        | 4 <b>I</b> a /a                | 3.62                                | 3 5                                  |            |
| 3    | •                       | *    | *               | L           |              |            | 3/2             | 6                     | 9/2       | <sup>41</sup> 9/2                 | 8/11          | $Pm^{3+}$        | Pm3+                  | ч1<br>лf4              | 19/2<br>51                     | 2.68                                | -                                    |            |
| 5    |                         | ÷    | 1               | ,<br>, ,    |              |            | $\frac{2}{5/2}$ | 5                     | 5/2       | 6He /2                            | $\frac{3}{2}$ | Sm <sup>3+</sup> | Fm <sup>3</sup> +     | 41                     | 6LI                            | 2.08                                | - 15                                 |            |
| 6    | ŧ                       | ŧ    | +               | • •         | ŧ            |            | 3               | 3                     | 0         | ${}^{7}F_{0}$                     | _             | Eu <sup>3+</sup> | 5m <sup>3</sup> +     | 410                    | <sup>3</sup> H <sub>5/2</sub>  | 0.84                                | 1.5                                  |            |
| 7    | ŧ                       | ŧ    | ŧ,              | + +         | ŧ            | ŧ          | 7/2             | 0                     | 7/2       | <sup>8</sup> S <sub>7/2</sub>     | 2             | Gd <sup>3+</sup> | Eu <sup>3+</sup>      | 410                    | Υ <sup>Γ</sup> ο               | 0                                   | 3.4                                  |            |
| 8    | <b>+</b> †              | +    | + -             | + +         | 1            | +          | 3               | 3                     | 6         | $^{7}F_{6}$                       | 3/2           | Tb <sup>3+</sup> | Gd <sup>3+</sup>      | 4t <sup>7</sup>        | °S <sub>7/2</sub>              | 7.94                                | 8.0                                  |            |
| 9    | +†<br>14                | +1   |                 | t †         | 1            | 1          | 5/2             | 5                     | 15/2      | °H <sub>15/2</sub>                | 4/3<br>5/4    | Dg <sup>3+</sup> | Tb <sup>3+</sup>      | 4f <sup>8</sup>        | /F <sub>6</sub>                | 9.72                                | 9.5                                  |            |
| 11   | 41<br>44                | 44   | 44              | г т<br>14 4 | <b>↑</b>     | . <b>⊺</b> | $\frac{2}{3/2}$ | 6                     | 。<br>16/2 | <sup>4</sup> L <sub>1</sub> C (2) | $\frac{5}{4}$ | Er <sup>3+</sup> | Dy <sup>3+</sup>      | 4f <sup>9</sup>        | <sup>6</sup> H <sub>15/2</sub> | 10.63                               | 10.6                                 |            |
| 12   |                         | - ŧŧ | ++              |             | ŧŧ           | ÷          | 1               | 5                     | 6         | <sup>3</sup> H <sub>6</sub>       | 7/6           | Tm <sup>3+</sup> | Ho <sup>3+</sup>      | $4f^{10}$              | <sup>5</sup> I <sub>8</sub>    | 10.60                               | 10.4                                 |            |
| 13   | ֠                       | ¥†   | <b>++</b> (     | + +         | t +t         | +          | 1/2             | 3                     | 7/2       | ${}^{2}F_{7/2}$                   | 8/7           | Yb <sup>3+</sup> | Er <sup>3+</sup>      | $4f^{11}$              | ${}^{4}I_{15/2}$               | 9.59                                | 9.5                                  |            |
| 14   | <b>↓</b> †              | ŧŧ   | <b>++</b>       | + +         | t +t         | ֠          | 0               | 0                     | 0         | <sup>1</sup> S <sub>0</sub>       | 0             | Lu <sup>3+</sup> | Tm <sup>3+</sup>      | $4f^{12}$              | $^{3}H_{6}$                    | 7.57                                | 7.3                                  |            |
|      |                         |      |                 |             |              |            |                 |                       |           |                                   |               |                  | Yb <sup>3+</sup>      | 4f <sup>13</sup>       | ${}^{2}\mathrm{F}_{7/2}$       | 4.54                                | 4.5                                  |            |
| d-sh | nell ( <i>l</i>         | = 3  | 2)              |             |              |            |                 |                       |           |                                   |               |                  |                       |                        |                                | $\mu_{\rm eff}/\mu_{\rm B}$         | $\mu_{\rm eff}/\mu_{\rm B}$          | $\mu_{ef}$ |
| n    | $\mathbf{m}_{\ell} = 1$ | 2,1, | 0,              | -1          | , -2         | 2,         | S L             | $=  \Sigma m_{\ell} $ | 1 1       |                                   |               |                  | Ion                   | <u>3d</u> <sup>n</sup> | State                          | (CalcJ)                             | (CalcJ=S)                            | <u>(E</u>  |
|      | 1                       |      |                 |             |              |            |                 | . /                   | -         |                                   |               |                  | $Ti^{3+}, V^{4+}$     | 3d1                    | $^{2}D_{3/2}$                  | 1.55                                | 1.73                                 | 1          |
| 1    | ŧ                       |      |                 |             |              |            | 1/2             | 2                     | 3/2       | $^{2}D_{3/2}$                     | Т             | i <sup>3+</sup>  | V <sup>3+</sup>       | 3d <sup>2</sup>        | ${}^{3}F_{2}^{3/2}$            | 1.63                                | 2.83                                 | 2          |
| 2    | ŧ                       | ŧ    |                 |             |              |            | 1               | 3                     | 2         | ${}^{3}F_{2}$                     | v             | 3+               | $Cr^{3+}, V^{2+}$     | 3d <sup>3</sup>        | ${}^{4}F_{2}^{2}$              | 0.77                                | 3.87                                 | 3          |
| 3    | ŧ                       | +    | +               |             |              |            | 3/2             | 3                     | 3/2       | ${}^{4}F_{3/2}$                   | C             | r <sup>3+</sup>  | $Mn^{3+}$ , $Cr^{2+}$ | 3d <sup>4</sup>        | ${}^{5}D_{0}^{-3/2}$           | 0                                   | 4.90                                 | 2          |
| 4    | +                       | *    | •               | *           | L            |            | 2 5/2           | 2                     | 0<br>5/2  | <sup>5</sup> D <sub>0</sub>       | C<br>E        | 63+ Mn2+         | $Fe^{3+}$ , $Mn^{2+}$ | 3d <sup>5</sup>        | 6S5/2                          | 5.92                                | 5.92                                 | 4          |
| 5    | ¥                       | +    | ł               | ÷           | ł            |            | 2               | 2                     | 4         | <sup>6</sup> D                    | F             | e <sup>2</sup> + | $Fe^{2+}$             | 3d <sup>6</sup>        | <sup>5</sup> D                 | 6.70                                | 4.90                                 | 4          |
| 7    | ÷,                      | +t   | ŧ               | ŧ           | ŧ            |            | $\frac{1}{3}/2$ | 3                     | 9/2       | $4F_{9/2}$                        | c             | o <sup>2+</sup>  | $Co^{2+}$             | 3d <sup>7</sup>        | 4 <b>F</b> <sub>6</sub> (2     | 6.63                                | 3 87                                 | 2          |
| 8    | <b>↓</b> †              | ¥†   | ŧ۴              | ŧ           | ŧ            |            | 1               | 3                     | 4         | ${}^{3}F_{4}^{3/2}$               | N             | i <sup>2+</sup>  | Ni <sup>2+</sup>      | 348                    | 3F                             | 5 59                                | 2.83                                 |            |
| 9    | ֠                       | +t   | ŧ†              | +t          | t            |            | 1/2             | 2                     | 5/2       | $^{2}D_{5/2}$                     | С             | u <sup>2+</sup>  | $Cu^{2+}$             | 2.49                   | <sup>2</sup> D                 | 3.59                                | 1 72                                 |            |
| 10   | ֠                       |      | - <b>∔</b> †    | ֠           | _ <b>∔</b> † |            | 0               | 0                     | 0         | 'S <sub>0</sub>                   |               |                  | Cu-,                  | 3 <b>u</b> -           | $-D_{5/2}$                     | 5.55                                | 1.75                                 | 1          |

Ground states of ions predicted by Hund's rules

Values of magnetic moments of 4f and 3d ions in insulating compounds

From Burns, 1990

### **Atomic paramagnetism - Example**

- In KCr(SO<sub>4</sub>)<sub>2</sub>·12 H<sub>2</sub>O compound, the only magnetic atom is Cr<sup>3+</sup> :
- 3 d-electrons:
  - S=3/2, L=3, J=3/2  $\rightarrow$

$$g_J = 1 + \frac{J^2 + S^2 - L^2}{2J^2} = \frac{2}{5}$$

 From experiment: g<sub>J</sub>=2, L=0, J = S =3/2, moment is determined by spin, orbital component is quenched

$$\mu_{eff}^2 = g_J \sqrt{J(J+1)} \mu_B = \sqrt{15} \mu_B = 3.87 \mu_B$$

• Maximum (asymptotic) value:

$$\mu_H = 2J\mu_B = 3\mu_B$$

(compare to the classic value)

Magnetic moment of  $\text{KCr}(\text{SO}_4)_2 \cdot 12 \text{ H}_2\text{O}$ , at fields up to 50,000 Oe and at 4.2 K



From Cullity, 2009

## Lecture recap

- Diamagnetism (susceptibility is negative)
  - All atoms
  - Classical, due to addition of magnetic moment to the electron orbital current
- Band (Pauli) paramagnetism
  - Due to alignment of spins of free electrons
  - Spins of the electrons at the Fermi surface can be affected
- Atomic paramagnetism
  - Due to alignment of existing magnetic moments of atomic electrons
  - Needs quantum assessment of magnetic moments of electrons (S, L, J) and statistics