
Lecture contents

- Ferromagnetism
 - Molecular field theory
 - Exchange interaction

1

Ferromagnetism – Molecular field theory

- Spontaneous magnetization occurs in some (Ferromagnetic) materials composed of atoms with unfilled shells
- For some reason magnetic moments are aligned even at relatively high temperature
- <u>Hypothesis</u>: magnetic order is due to strong local magnetic field (Weiss effective field) at the site of each dipole

$$B_{loc} = B_a + \mu_0 \gamma M$$

with a constant γ

 Consider a collection of N identical atoms per unit volume, with total angular momentum *J*, and use QM treatment of atomic paramagnetism

$$M = M_{sat} B_J(y) \qquad M_{sat} = N \mu_{eff}$$

with
$$y = \frac{\mu_{eff} B_{loc}}{k_B T} \equiv \frac{\mu_{eff} \left(B_a + \mu_0 \gamma M \right)}{k_B T} = \frac{g_J \mu_B J \left(B_a + \mu_0 \gamma M \right)}{k_B T}$$

Values of Curie temperatures and spontaneous magnetism (at 0 K in Gauss) for a few ferromagnetic materials

(a)	Mat.	T _c (°K)	M _s	Mat.	T _c (°K)	M _s
	Fe	1043	1752	CrBr ₃	37	270
	Co	1388	1446	Au ₂ MnAl	200	323
	Ni	627	510		630	726
	Gd	293	1980	Cu_2MnIn	500	613
	Dy	85	3000	MnAs	318	870
	EuO	77	1910	MnBi	670	675
	EuS	16.5	1184	GdCl ₃	2.2	550
(b)	Mat.	T _N (°K)		Mat.	T _N (°I	K)
	MnO	122		KCoF ₃	125	
	FeO	198		MnF ₂	67.3	34
	CoO	291		FeF ₂	78.4	
	NiO	600		CoF_2	37.	7
	RbMnF ₃	54.5		MnCl ₂	2	
	KFeF ₃	115		vs	1040	
	KMnF ₃	88.3		Cr	311	
(c)	Mat.	T _c (°K)	M _s	Mat.	T _c (°K)	Ms
	Fe ₃ O ₄	858	510	$CuFe_2O_4$	728	160
	$CoFe_2O_4$	793	475	$MnFe_2O_4$		560
	$NiFe_2O_4$	858	300	$Y_3Fe_5O_{12}$		195

From Burns, 1990

Ferromagnetism – Molecular field theory

• Now let's find the spontaneous magnetization ($B_a = 0$)

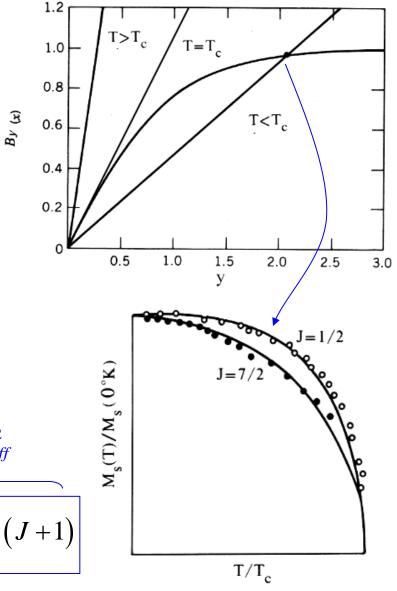
$$M = M_{sat} B_J(y)$$
 with $y = \frac{\mu_{eff} \mu_0 \gamma M}{k_B T}$

Solving equation against *y* :

$$y \frac{k_B T}{\mu_{eff} \,\mu_0 \gamma M_{sat}} = B_J \left(y \right)$$

- Depending on temperature spontaneous magnetization can be either M=0 or finite
- At low y $B_J(y \ll 1) \approx y \frac{J+1}{3J}$

We can find critical Curie temperature:


$$\frac{k_B T_C}{\mu_{eff} \,\mu_0 \gamma M_{sat}} = \frac{J+1}{3J}$$

$$T_{C} = \frac{N\mu_{0}\gamma}{3k_{B}} \left(g_{J}\mu_{B}\right)^{2} J\left(J+1\right)$$

 $\mu_{\scriptscriptstyle e\!f\!f}^2$

From Burns, 1990

Solution of equation with Brillouin function

Ferromagnetism – Molecular field theory

• At temperatures $T > T_c$, there is no spontaneous magnetization, and we can find temperature dependence of magnetization $(B_a > 0)$ $M = M - B_c(w)$

$$M = M_{sat}B_J(y)$$

with $y = \frac{g_J \mu_B J (B_a + \mu_0 \gamma M)}{k_B T}$

• Solving for *M*:

$$M = \frac{C}{\mu_0 \left(T - C\gamma \right)} B_a$$

with Curie constant

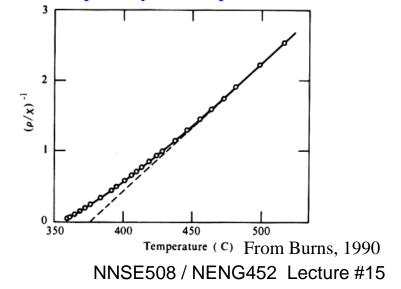
$$C = \frac{N\mu_0\mu_{eff}^2}{3k_B} = \frac{T_C}{\gamma}$$

 Then susceptibility of ferromagnet in paramagnetic region

$$\chi = \frac{C}{T - T_C}$$

Huge !

• Some estimation for iron:

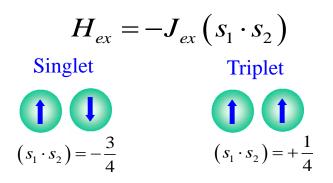

$$g_J = 2; J = 1; N = 8.5 \cdot 10^{28} m^{-3} \implies C = 1.77 K$$

$$T_C = 1043 \ K; \implies \gamma = 588$$

 $M \approx 1700 \text{ Gauss}; \implies B \sim 10^6 \text{ Gauss} = 100 T$

Reciprocal susceptibility vs. temperature for nickel

 $M = M_{sat} \gamma \frac{J+1}{3J} = \frac{N\mu_{eff}^2}{3k_{\rm p}T} \left(B_a + \mu_0 \gamma M\right)$


Ferromagnetism – Heisenberg exchange interaction

- What is the reason for so high local magnetic field ? – <u>Exchange interaction</u>
- Consider <u>two electrons</u> on <u>two atoms</u>. We need to find the energy difference = exchange integral J_{ex}) :
- Their wavefunction is antisymmetric due to Pauli exclusion principle
- Usually the interaction between the space and spin parts is small, and the variables can be separated :
- Antiparallel spins give antisymmetric spin wavefunction, etc.
- We can construct wavefunctions for singlet and triplet states with correct symmetry:

 $\Psi_1(\mathbf{r}_1,\mathbf{r}_2)=\phi_a(\mathbf{r}_1)\phi_b(\mathbf{r}_2)$

$$\Psi_2(\mathbf{r}_1,\mathbf{r}_2)=\phi_a(\mathbf{r}_2)\phi_b(\mathbf{r_1})$$

$$\Psi(r_1, s_1, r_2, s_2) = -\Psi(r_2, s_2, r_1, s_1)$$

$$\Psi(r_1, s_1, r_2, s_2) = \varphi(r_1, r_2) g(s_1, s_2)$$

Wavefunction	Singlet	Triplet
Total	Antisym.	Antisym.
Spin part	Antisym.	Symmetric
Space part	Symmetric	Antisym.

$$\varphi_{S}(x_{1}, x_{2}) = \phi_{a}(r_{1})\phi_{b}(r_{2}) + \phi_{a}(r_{2})\phi_{b}(r_{1}) = \Psi_{1} + \Psi_{2}$$
$$\varphi_{T}(x_{1}, x_{2}) = \phi_{a}(r_{1})\phi_{b}(r_{2}) - \phi_{a}(r_{2})\phi_{b}(r_{1}) = \Psi_{1} - \Psi_{2}$$

Ferromagnetism – Heisenberg exchange interaction-contd

• The energy shift of singlet and triplet states can be calculated from perturbation theory:

$$E_{S} = \left\langle \phi_{S} \left| V \right| \phi_{S} \right\rangle = \left\langle \Psi_{1} \left| V \right| \Psi_{1} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{2} \right\rangle + \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{1} \right\rangle$$
$$E_{T} = \left\langle \phi_{T} \left| V \right| \phi_{T} \right\rangle = \left\langle \Psi_{1} \left| V \right| \Psi_{1} \right\rangle + \left\langle \Psi_{2} \left| V \right| \Psi_{2} \right\rangle - \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle - \left\langle \Psi_{2} \left| V \right| \Psi_{1} \right\rangle$$

$$V(r_1, r_2) = \frac{e^2}{\varepsilon_0} \left[\frac{1}{r_{ab}} - \frac{1}{r_{a2}} - \frac{1}{r_{b1}} + \frac{1}{r_{12}} \right] \quad (r_1) \quad (r_2) \quad (r_3) \quad (r_4) \quad (r_4) \quad (r_5) \quad$$

• The energy difference between the singlet and triplet states $E = E = I = 4/\Psi |V|\Psi \rangle = 4/\phi (r) \phi (r) |V| \phi (r) \phi (r)$

$$E_{S} - E_{T} = J_{exc} = 4 \left\langle \Psi_{1} \left| V \right| \Psi_{2} \right\rangle = 4 \left\langle \phi_{a} \left(r_{1} \right) \phi_{b} \left(r_{2} \right) \left| V \right| \phi_{a} \left(r_{2} \right) \phi_{b} \left(r_{1} \right) \right\rangle$$

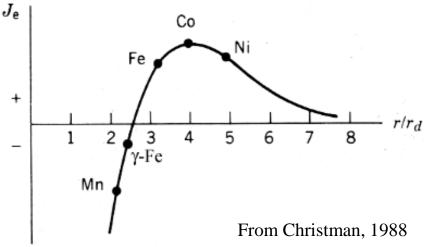
$$=\frac{e^{2}}{\varepsilon_{0}}\left[-8\left\langle\phi_{a}\left(r_{1}\right)\phi_{b}\left(r_{2}\right)\left|\frac{1}{r_{a2}}\right|\phi_{a}\left(r_{2}\right)\phi_{b}\left(r_{1}\right)\right\rangle+4\left\langle\phi_{a}\left(r_{1}\right)\phi_{b}\left(r_{2}\right)\left|\frac{1}{r_{ab}}\right|\phi_{a}\left(r_{2}\right)\phi_{b}\left(r_{1}\right)\right\rangle+4\left\langle\phi_{a}\left(r_{1}\right)\phi_{b}\left(r_{2}\right)\left|\frac{1}{r_{12}}\right|\phi_{a}\left(r_{2}\right)\phi_{b}\left(r_{1}\right)\right\rangle\right]$$

- At small *a-b* distance $J_{exc} < 0$ and singlet state is favorable
- At large *a-b* distance $J_{exc} > 0$ and triplet state is favorable
- BTW if the electrons are on the same atom, the ion interaction change is zero, $J_{exc} > 0$ and antiparallel spins are favorable = Hund's rule

6

Ferromagnetism – Heisenberg exchange interaction contd.

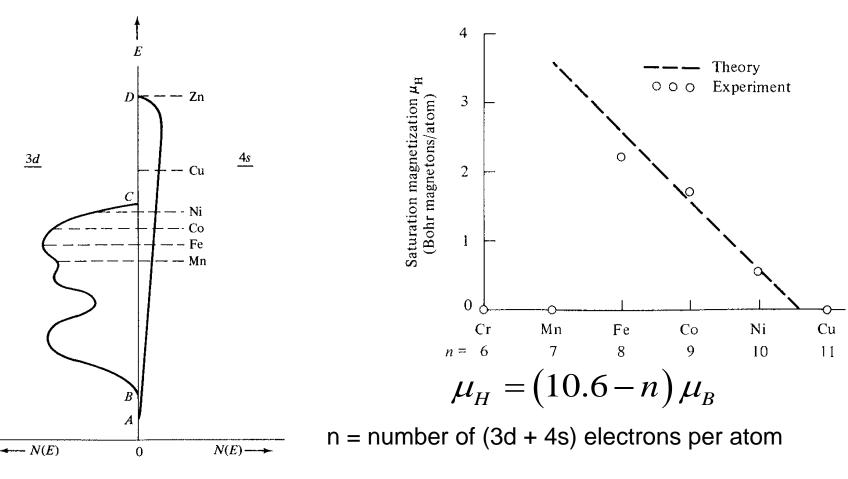
- Exchange interaction can be ferromagnetic or antiferromagnetic depending on interatomic distance
- Exchange interaction is electrostatic (strong) in nature
- To correlate it with molecular field theory, we can write:


$$H_{ex} = -\sum_{i,j} J_{ex} \left(s_i \cdot s_j \right) \equiv \sum_i g_J \mu_B s_i B_{loc}$$
$$z J_{ex} s = g_J \mu_B B_{loc}$$
Number of pearest pei

Number of nearest neighbors

• For Fe:
$$J_{ex} = \frac{g_J \mu_B \mu_0 \gamma M}{zs} = \frac{(g_J \mu_B)^2 \mu_0 \gamma n}{z} \approx 11 meV$$

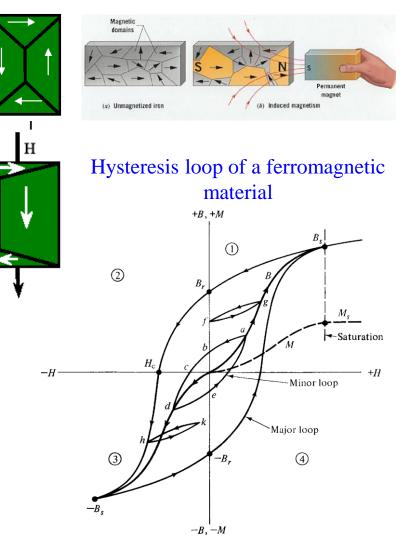
 Electrostatic interaction easily accounts for this value Exchange integral vs. interatomic distance



Role of band structure

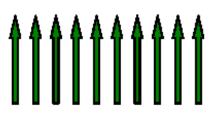
Density of states in 3d and 4s bands

Dependence of the saturation magnetization on the number n of (3d + 4s) electrons per atom



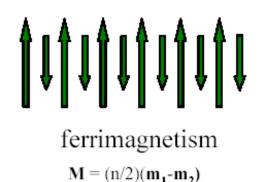
For Ni (n=10) moment is 0.6μ_B

Ferromagnetic materials


- Energy is minimized by ordering spins into "domains"
 - Net moment, M, would cause external field, increase energy
 - Magnetic domains cancel so that M = 0
 - Natural ferromagnetism does not produce net magnetic field
- To magnetize a ferromagnet, impose H
 - Domain walls move to align **M** and **H**
 - Defects impede domain wall motion
 - Magnetization (M_r) retained when H removed
- Magnetic properties
 - M_s = saturation magnetization (All spins aligned with field)
 - M_r = remanent magnetization (Useful moment of permanent magnet)
 - H_c = coercive force (Field required to "erase" moment)
 - Area inside curve = magnetic hysteresis (Governs energy lost in magnetic cycle)

Ferromagnetic material is always locally saturated

Core magnetism – materials with spontaneously ordered magnetic dipoles


- High temperature:
 - Spins disordered \Rightarrow paramagnetism
- Low Temperature (T < Tc)
 - Spins align = ferromagnetism
 - Elements: Fe, Ni, Co, Gd, Dy
 - Alloys and compounds: AlNiCo, FeCrCo, SmCo₅, Fe₁₄Nd₂B
 - Like spins alternate = antiferromagnetism (RbMnF₃)
 - Unlike spins alternate = ferrimagnetism
 - Compounds: Fe₃O₄ (lodestone, magnetite), CrO₃, SrFe₂O₃, other ferrites and garnets

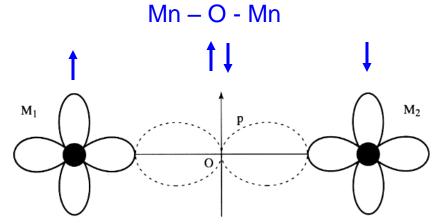
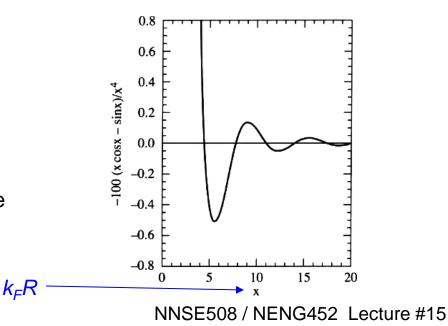
Ferromagnetism

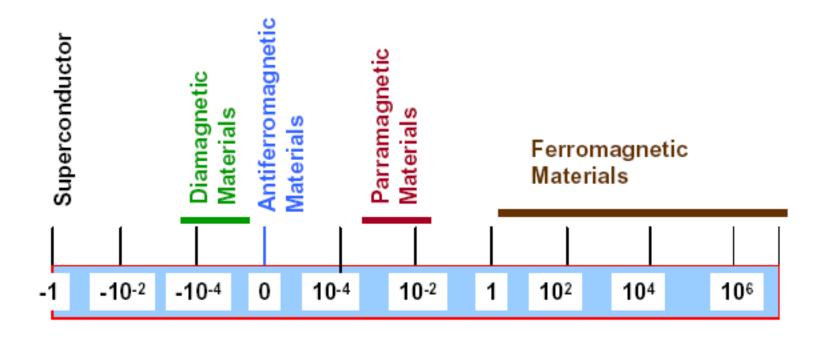
M = nm

antiferromagnetism M = 0

Other types of exchange interaction

- Superexchange (transition metal oxides)
 - Can be ferromagnetic or anfiferromagnetic depending upon the energy of delocalization of the p-electrons on M₁ and M₂
 - Ordering temperature up to 900 K in ferrites (NiFe₂O₄ - 863 K)
 - Sign mostly negative, though ferromagnetics are known: EuO (T_c =69K) or CrBr₃ (T_c =37K)
- RKKY interaction (Ruderman-Kittel-Kasuya-Yosida) - Indirect exchange over relatively large distances trough spin of conduction electrons (4f metals)
 - Interaction oscillates with (*k_FR*), Fermi wavevector determines the wavelength of oscillations
 - The interaction is of the same order for all rare earths, but ordering temperatures vary due to magnetic moment: 19K for Nd, 289 K for Gd)


Figure 9.1 - M_1 and M_2 : transition metal ions, O: O^{2-}

RKKY interaction

Magnetic materils

· Magnetic induction field is the same in a

Magnetic Suscpetibility, χ

From Goldberg, 2006

Physical constants

Name and symbol	Numerical value		
Speed of light in vacuum, c	2.9979×10 ⁸ m.s ⁻¹		
Permeability of vacuum, μ_0	$4\pi \times 10^{-7}$ H.m ⁻¹		
Permittivity of vacuum, $\varepsilon_0 = 1/c^2 \mu_0$	8.8542×10 ⁻¹² F.m ⁻¹		
Planck's constant, h	6.6261×10 ⁻³⁴ J.s		
$\hbar = h/2\pi$	1.0546×10^{-34} J.s		
Acceleration of gravity, g	9.8066 m.s ⁻²		
Electron rest mass, m	9.1094×10 ⁻³¹ kg		
Electron charge (absolute value), e	1.6022×10 ⁻¹⁹ C		
Bohr magneton, $\mu_B = e\hbar/2m$	9.2742×10 ⁻²⁴ A.m ²		
Flux quantum, h/2e	2.0678×10^{-15} Wb		
Avogadro's number N	$6.0221 \times 10^{23} \text{ mol}^{-1}$		
Boltzmann's constant, k_B	1.3807×10 ⁻²³ J.K ⁻¹		

Length (metre)	: $1 \text{ m} = 10^2 \text{ cm} = 39.37$ " (inch) = 10^{10} angström (Å).
Force (newton)	$: 1 \text{ N} = 10^5 \text{ dyn} = 0.102 \text{ kgf}.$
Energy (joule)	: 1 J = $10^7 \text{ erg} = 0.7243 \times 10^{23} \text{ K} = 0.6241 \times 10^{19} \text{ eV}.$
Energy density	$: 1 \text{ J} \cdot \text{m}^{-3} = 10 \text{ erg} \cdot \text{cm}^{-3}.$
Power (watt)	: 1 W = $10^7 \text{ erg.s}^{-1} = 1.359 \times 10^{-3} \text{ CV} = 1.340 \times 10^{-3} \text{ hp}.$
Pressure (pascal)	: 1 Pa = 10 baryes = 10^{-5} bar = 1.02×10^{-5} kgf. cm ⁻² = 7.49×10^{-3} torrs = 1.45×10^{-4} psi.

From Tremolet de Lacheisserie, 2005